完全管理型のMLOpsソリューションを使用して、あらゆるモデルをトレーニングおよびデプロイ

AIパイプラインを加速し、迅速に本番環境に移行します。JFrog MLは、あらゆるAIまたはMLモデルを簡単に構築、デプロイ、管理、監視することができます。

JFrog MLは、プロトタイプから本番環境までのAI開発を効率化し、インフラストラクチャの懸念から解放され、重要なことに集中できるようにします。

お問い合わせ

モデルレジストリ

高度で一元化された本番環境対応のモデルレジストリを使用して、モデルを開発環境から本番環境に移行します。JFrog MLは、JFrog Artifactoryのすべての利点をMLOpsのライフサイクルにもたらします。  

  • checkmarkManage the entire model lifecycle with a single centralized registry
  • checkmarkGain visibility into training parameters, hyper parameter tuning and model metadata
  • checkmarkManage model and traditional software artifacts in one system
  • checkmarkBring DevOps and MLOps together one one source of truth
詳しく見る

モデルトレーニング

線形回帰から高度なディープラーニングやLLMまで、AI/MLモデルのトレーニングと微調整を1回のクリックで簡単に行うことができます。

  • checkmarkTrained models are saved in the model registry for a smooth transition from training to production
  • checkmarkTrain models on GPU or CPU machines to handle any workload
  • checkmarkRetrain models periodically with easy-to-set-up automations

モデルサービング

AI/MLモデルをあらゆる規模で本番環境にワンクリックでデプロイできます。

  • checkmarkServe models as API endpoints for any realtime machine learning use cases
  • checkmarkExecute batch inference on any dataset from various data sources
  • checkmarkA/B test models to compare real-world performance

モデル監視

モデルのパフォーマンスを監視し、データの異常をリアルタイムで検出します。

  • checkmarkモデルの精度を適宜監視し、必要に応じてパラメータを調整
  • checkmark予測品質の継続的な改善とシステムの信頼性の維持
  • checkmarkPagerDutyやSlackなどの監視およびアラートツールと統合して、モデルの状態とパフォーマンスをリアルタイムで追跡します

7,500以上のDevOpsチームがJFrogを信頼しています

Fortune 100の企業の80%以上にサービスを提供
Cars.com
FFF Enterprises
Workiva
Deloitte
Spot
Mercedes
Monster
Redbox
Yunex Traffic
"We wanted to figure out what can we really use instead of having five, or six different applications. Is there anything we can use as a single solution? And Artifactory came to the rescue. It turned out to be a one-stop shop for us. It provided everything that we need."
Keith Kreissl
Principal Developer, Cars.com
"By deploying JFrog, we’ve seen less vulnerabilities, which has given our developers more time to focus on developing new applications. And with the different development teams all being on the same platform, it has centralized and streamlined the process."
Billy Norwood
CISO, FFF Enterprises
"Since moving to Artifactory, our team has been able to cut down our maintenance burden significantly…we’re able to move on and be a more in depth DevOps organization."

Stefan Kraus
Software Engineer, Workiva
"Since moving to Artifactory, our team has been able to cut down our maintenance burden significantly…we’re able to move on and be a more in depth DevOps organization."
James Carter
Distinguished Engineer, Deloitte
"Before… delivering a new AI model took weeks... Now the research team can work independently and deliver while keeping the engineering and product teams happy. We had 5 new models running in production within 4 weeks."
Idan Schwartz
Head of Research, Spot (by NetApp)
“Most large companies have multiple sites and it is critical for those companies to manage authentication and permission efficiently across locations. JFrog Enterprise+ will provide us with an ideal setup that will allow us to meet our rigorous requirements from the get go. It's advanced capabilities, like Access Federation, will reduce our overhead by keeping the users, permissions, and and groups in-sync between sites.”
Siva Mandadi
Devops - Autonomous Driving, Mercedes
"Instead of a 15-month cycle, today we can release virtually on request.”
Martin Eggenberger
Chief Architect, Monster
“As a long-time DevOps engineer, I know how difficult it can be to keep track of the myriad of package types – legacy and new – that corporations have in their inventory. JFrog has always done a phenomenal job at keeping our team supported, efficient and operational – because if JFrog goes out, we might as well go home. Thankfully, with AWS infrastructure at our backs as well, we know we can develop and deliver with confidence anywhere our business demands today, and in the future.”
Joel Vasallo
Head of Cloud DevOps, Redbox
“When we had that issue with log4j, it was announced on Friday afternoon and [using JFrog] by Monday at noon we had all cities rolled out with the patch.”
Hanno Walischewski
Chief System Architect, Yunex Traffic

マルチクラウド:当社のクラウド、それともお客様のクラウド

JFrog MLはAWSとGCPをネイティブにサポートしており、当社のプラットフォームまたは独自のインフラストラクチャにデプロイしてフローを効率化することができます。

専門家と話をする

この流れに乗り遅れないように。AIによるデータ分析には柔軟なインフラが必要です。先手を打ってください。

最高のMLエンジニアリングチームとデータサイエンスチームが本番環境でモデルをどのようにデプロイしているかを
ご覧ください。複雑なMLOpsに別れを告げて、今すぐ配信を始めましょう。