Entraînez et déployez n’importe quel modèle avec une solution MLOps entièrement managée

Accélérez les pipelines d’IA pour passer rapidement à la production. JFrog ML vous permet d'assembler, de déployer, de gérer et de superviser facilement tous les modèles d’IA ou de ML.

JFrog ML rationalise le développement de l’IA, du prototype à la production, vous libérant ainsi des problèmes d’infrastructure afin que vous puissiez vous concentrer sur ce qui compte.

Planifiez Une Démo

Registre des modèles

Faites passer vos modèles de la recherche à la production grâce à un registre de modèles avancé, centralisé et prêt pour la production. JFrog ML apporte tous les avantages de JFrog Artifactory à votre cycle de vie MLOps.  

  • checkmarkManage the entire model lifecycle with a single centralized registry
  • checkmarkGain visibility into training parameters, hyper parameter tuning and model metadata
  • checkmarkManage model and traditional software artifacts in one system
  • checkmarkBring DevOps and MLOps together one one source of truth
En Savoir Plus
En Savoir Plus

Entraînement de modèle

En un seul clic, entraînez et ajustez facilement les modèles d’IA/ML, de la régression linéaire à l’apprentissage profond avancé, en passant par les LLM.

  • checkmarkTrained models are saved in the model registry for a smooth transition from training to production
  • checkmarkTrain models on GPU or CPU machines to handle any workload
  • checkmarkRetrain models periodically with easy-to-set-up automations

Service de modèle

Déployez des modèles d’IA/ML en production à n’importe quelle échelle en un clic.

  • checkmarkServe models as API endpoints for any realtime machine learning use cases
  • checkmarkExecute batch inference on any dataset from various data sources
  • checkmarkA/B test models to compare real-world performance

Surveillance des modèles

Surveillez les performances des modèles et détectez les anomalies de données en temps réel.

  • checkmarkmonitor model accuracy over time and adapt parameters as needed
  • checkmarkContinually improve prediction quality and maintain system reliability
  • checkmarkIntegrate with monitoring and alerting tools such as PagerDuty and Slack to track the health and performance of models in real time

Plus de 7 500 équipes DevOps font confiance à JFrog

Au service de plus de 80 % du Fortune 100
Cars.com
FFF Enterprises
Workiva
Deloitte
Spot
Mercedes
Monster
Redbox
Yunex Traffic
"We wanted to figure out what can we really use instead of having five, or six different applications. Is there anything we can use as a single solution? And Artifactory came to the rescue. It turned out to be a one-stop shop for us. It provided everything that we need."
Keith Kreissl
Principal Developer, Cars.com
"By deploying JFrog, we’ve seen less vulnerabilities, which has given our developers more time to focus on developing new applications. And with the different development teams all being on the same platform, it has centralized and streamlined the process."
Billy Norwood
CISO, FFF Enterprises
"Since moving to Artifactory, our team has been able to cut down our maintenance burden significantly…we’re able to move on and be a more in depth DevOps organization."

Stefan Kraus
Software Engineer, Workiva
"Since moving to Artifactory, our team has been able to cut down our maintenance burden significantly…we’re able to move on and be a more in depth DevOps organization."
James Carter
Distinguished Engineer, Deloitte
"Before… delivering a new AI model took weeks... Now the research team can work independently and deliver while keeping the engineering and product teams happy. We had 5 new models running in production within 4 weeks."
Idan Schwartz
Head of Research, Spot (by NetApp)
“Most large companies have multiple sites and it is critical for those companies to manage authentication and permission efficiently across locations. JFrog Enterprise+ will provide us with an ideal setup that will allow us to meet our rigorous requirements from the get go. It's advanced capabilities, like Access Federation, will reduce our overhead by keeping the users, permissions, and and groups in-sync between sites.”
Siva Mandadi
Devops - Autonomous Driving, Mercedes
"Instead of a 15-month cycle, today we can release virtually on request.”
Martin Eggenberger
Chief Architect, Monster
“As a long-time DevOps engineer, I know how difficult it can be to keep track of the myriad of package types – legacy and new – that corporations have in their inventory. JFrog has always done a phenomenal job at keeping our team supported, efficient and operational – because if JFrog goes out, we might as well go home. Thankfully, with AWS infrastructure at our backs as well, we know we can develop and deliver with confidence anywhere our business demands today, and in the future.”
Joel Vasallo
Head of Cloud DevOps, Redbox
“When we had that issue with log4j, it was announced on Friday afternoon and [using JFrog] by Monday at noon we had all cities rolled out with the patch.”
Hanno Walischewski
Chief System Architect, Yunex Traffic

Multi-cloud : notre Cloud ou le vôtre

JFrog ML offre un support natif pour AWS et GCP, ce qui vous permet de réaliser un déploiement sur notre plateforme ou sur votre propre infrastructure pour un flux rationalisé.

Parlez à un expert
Parlez à un expert

Ne manquez pas le coche. Les applications d’IA ont besoin d’une infrastructure flexible. Si vous ne restez pas en tête, vous serez à la traîne.

Découvrez comment les meilleures équipes d’ingénierie ML et de science des données déploient des modèles en
production. Dites adieu à la complexité du MLOps et commencez à livrer dès aujourd'hui.