Upload a scikit-learn Model to a Machine Learning Repository
Use the following function to upload a scikit-learn model to a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" properties = {"key1": "value1"} dependencies = ["path/to/dependencies/pyproject.toml", "path/to/dependencies/poetry.lock"] code_dir = "full/path/to/code/dir" joblib_model = get_scikit_learn() # Function that Returns a scikit learn model frogml.scikit_learn.log_model( model=joblib_model, repository=repository, model_name=name, namespace=namespace, version=version, properties=properties, dependencies=dependencies, code_dir=code_dir, )
Download a scikit-learn Model from a Machine Learning Repository
Use the following function to download a deserialized scikit-learn model from a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" full_target_path = "full/path/to/target/path" scikit_learn_deserialized_model = frogml.scikit_learn.load_model( repository=repository, namespace=namespace, model_name=name, version=version, target_path=full_target_path, )
Get Information on a scikit-learn Model in a Machine Learning Repository
Use the following function to retrieve information on a specific scikit-learn model stored in a Machine Learning repository in Artifactory.
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" frogml.scikit_learn.get_model_info( repository=repository, name=name, namespace=namespace, version=version, )