Upload a PyTorch Model to a Machine Learning Repository
Use the following function to upload a PyTorch model to a Machine Learning repository in Artifactory:
import frogml import torch.nn as nn repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" properties = {"key1": "value1"} dependencies = ["pandas==1.2.3"] code_dir = "full/path/to/code/dir" class Classifier(nn.Module): def __init__(self): super().__init__() self.hidden1 = nn.Linear(8, 12) self.act1 = nn.ReLU() self.hidden2 = nn.Linear(12, 8) self.act2 = nn.ReLU() self.output = nn.Linear(8, 1) self.act_output = nn.Sigmoid() def forward(self, x): x = self.act1(self.hidden1(x)) x = self.act2(self.hidden2(x)) x = self.act_output(self.output(x)) return x frogml.pytorch.log_model( model=Classifier(), repository=repository, model_name=name, namespace=namespace, version=version, properties=properties, dependencies=dependencies, code_dir=code_dir, )
Download a PyTorch Model from a Machine Learning Repository
Use the following function to download a PyTorch model from a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" model = frogml.pytorch.load_model( repository=repository, namespace=namespace, model_name=name, version=version, )
Get Information on a PyTorch Model in a Machine Learning Repository
Use the following function to retrieve information on a specific PyTorch model stored in a Machine Learning repository in Artifactory.
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" frogml.pytorch.get_model_info( repository=repository, name=name, namespace=namespace, version=version, )