Upload an ONNX Model to a Machine Learning Repository
Use the following function to upload an ONNX model to a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" properties = {"key1": "value1"} dependencies = ["path/to/dependencies/pyproject.toml", "path/to/dependencies/poetry.lock"] code_dir = "full/path/to/code/dir" onnx_model = get_onnx_model() # Function that Returns a onnx model frogml.onnx.log_model( model=onnx_model, repository=repository, model_name=name, namespace=namespace, version=version, properties=properties, dependencies=dependencies, code_dir=code_dir, )
Download an ONNX Model from a Machine Learning Repository
Use the following function to download a deserialized ONNX model from a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" full_target_path = "full/path/to/target/path" onnx_deserialized_model = frogml.onnx.load_model( repository=repository, namespace=namespace, model_name=name, version=version, target_path=full_target_path, )
Get Information on an ONNX Model in a Machine Learning Repository
Use the following function to retrieve information on a specific ONNX model stored in a Machine Learning repository in Artifactory.
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" frogml.onnx.get_model_info( repository=repository, name=name, namespace=namespace, version=version, )