Upload Generic Python Function Model to a Machine Learning Repository
Use the following function to upload a Generic Python Function model to a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" properties = {"key1": "value1"} dependencies = ["pandas==1.2.3"] code_dir = "full/path/to/code/dir" def simple_regression(x, y): """ Perform simple linear regression on the given data. :param x: List of input values (independent variable) :param y: List of output values (dependent variable) :return: Tuple containing the slope and intercept of the regression line """ n = len(x) mean_x = sum(x) / n mean_y = sum(y) / n # Calculate the slope (m) and intercept (b) numerator = sum((x[i] - mean_x) * (y[i] - mean_y) for i in range(n)) denominator = sum((x[i] - mean_x) ** 2 for i in range(n)) slope = numerator / denominator intercept = mean_y - slope * mean_x return slope, intercept frogml.python.log_model( function=simple_regression, repository=repository, model_name=name, namespace=namespace, version=version, properties=properties, dependencies=dependencies, code_dir=code_dir, )
Download a Generic Python Function Model from a Machine Learning Repository
Use the following function to download a Generic Python Function model from a Machine Learning repository in Artifactory:
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" full_target_path = "full/path/to/target/path" # optional parameter regression_func = frogml.python.load_model( repository=repository, namespace=namespace, model_name=name, version=version, target_path=full_target_path, )
Get Information on a Generic Python Function Model in a Machine Learning Repository
Use the following function to retrieve information about a specific Generic Python Function model stored in a Machine Learning repository in Artifactory.
import frogml repository = "repository-name" name = "model-name" namespace = "namespace" version = "version-1" frogml.python.get_model_info( repository=repository, name=name, namespace=namespace, version=version, )