
JFrog

--- MISSION CONTROL
Version 2.0 User Guide

Welcome to JFrog Mission Control
Overview
JFrog Mission Control is designed to be your single access point for managing multiple services of
Artifactory and Xray. It lets you view all services under your administrative control whether they are
installed on your own site, or at geographically remote sites around the world. You can see the
connections between them, perform operations on several instances at once, or drill down to view and
configure a single instance at a time. The main modules of Mission Control are:

Explore: View all sites being managed by Mission Control on a map or as a list.
Services: View and manage all services under your control.
Graphs: Get data about your Artifactory instances and their repositories managed by Mission
Control.
Admin: Manage configuration scripts, , licenses, disaster recovery, users, and Git integration
more.

Support Matrix
Mission Control provides full support for Artifactory instances running on an Enterprise (or SaaS
Enterprise) license, and partial support for Artifactory instances running on an OSS or Pro license as
described in the table below:

Xray OSS Pro Enterprise AOL Dedicated
Server

Explore

Service view

Scripting Artifactory configuration updates

REST API

Graphs

Disaster Recovery

Notification and policies

License deployment

License bucket

Page Contents

Overview
Support Matrix
PDF Download

Quick Links

Mission Control
REST API

Release Notes

Read More

Installing Mission Control
Upgrading Mission Control
Running with Docker
Configuring Mission Control
Configuration Scripts
Exploring Sites
Managing Services
Managing Licenses
Notifications
Graphs
JMX MBeans
System Monitoring
Mission Control REST API
JFrog CLI
Disaster Recovery
System Backup and Rapid
Recovery
Troubleshooting
Release Notes

1 JFrog Mission Control Version 2.0 User Guide.pdf

Installing Mission Control
Overview
This page helps you get started using Mission Control. Assuming you comply with the System

 specified below, after going through the instructions on this page, you should have your Requirements
instance of Mission Control configured with at least one Artifactory instance which you can monitor and
configure through your Mission Control.

Mission Control supports managing of Artifactory from version 4.5.services

License
Mission Control itself is provided for free and has no license requirements. However, while you may view
any Artifactory service from Mission Control, you may only configure and see relationships between
services that are activated with an .Artifactory Enterprise license

System Requirements

Hardware
JFrog Mission Control requires the following hardware:

Processor: 6 cores
RAM Memory: 8 GB
Storage: 100 GB

Platforms
JFrog Mission Control supports any non-Windows platform that can run Docker v1.11 and above. In
addition, it has been tested and verified to run as a non-Docker installation on the following 64-bit flavors
of Linux:

Debian 8.x
Centos 7.x
Ubuntu 16.x
Red Hat 7.x

Page Contents

Overview
License
System Requirements

Hardware
Platforms
Java requirements
PHP requirements
SELinux
Browsers

Download
Installation

Docker Installation
Debian Installation

System
library
requireme
nts
Installatio
n
Instructio
ns

CentOS
Installation

System
library
requireme
nts
Installatio
n
Instructio
ns

Ubuntu Installation
System
library
requireme
nts
Installatio
n
Instructio
ns

Red Hat
Installation

System
library
requireme
nts
Installatio
n
Instructio
ns

Installation File Structure
Mission Control File
structure

Home directory
Microservices and Ports

Docker Installation
Linux Installation

Data
Status of Installation
Uninstalling
Secure Access With SSL
Accessing Mission Control

Running with Docker?

This page provides installation and upgrade instructions for running Mission Control as a
Debian or Centos distribution.

If you are running Mission Control as a Docker container, please refer to Running with
.Docker

Viewing Artifactory OSS, Artifactory Pro and Artifactory SaaS

You may add services of Artifactory OSS, Artifactory Pro to Mission Control, but for these
instances, you can only view basic information. You cannot perform any actions on these
services through Mission Control.

As a shared managed service, Artifactory SaaS is maintained for you by JFrog and can not be
managed by Mission Control.

However, if you are running a Artifactory SaaS as a , this can be fully dedicated server
managed by Mission Control.

2 JFrog Mission Control Version 2.0 User Guide.pdf

Read More

Managing Third-Party
Components
Using External Databases
Elasticsearch Usage Guide
Migrating Data From
InfluxDB to Elasticsearch

Java requirements
You must run Mission Control with .JDK 8

PHP requirements
Mission Control uses PHP to support its scripting functionality and requires PHP on Debian and on Centos. 5.6 PHP 5.4

SELinux
Centos flavors may have issues starting MongoDB because of SELinux restrictions. Please refer to the for instructions on MongoDB documentation
configuring SELinux.

Browsers
Mission Control has been tested with the latest versions (known at the time of release) of Google Chrome, Firefox and Safari.

Download
The latest version of Mission Control is freely available for download from the .Mission Control Download Page

Installation

Docker Installation
Mission Control is available for download as a Docker image to be run as a container. For full details, please refer to . Running with Docker

Debian Installation
JFrog Mission Control currently supports Debian 8.x.

Do not install Mission Control on a higher version of Debian as it has not been validated to work.

System library requirements

You can download the latest JDK from the .Oracle Java SE Download Site

JAVA_HOME and JRE_HOME

Make sure your JAVA_HOME environment variable correctly points to your JDK 8 installation.

If you also have JRE_HOME defined in your system, this will take precedence over JAVA_HOME and therefore you need to, either point
JRE_HOME to your JDK 8 installation, or remove the JRE_HOME definition.

No spaces

Mission Control offers a variety of options for installation on different platforms.

In all cases, make sure that the full path to the installation folder does not contain any spaces.

3 JFrog Mission Control Version 2.0 User Guide.pdf

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/#configure-selinux
https://jfrog.com/download-mission-control/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

1.

2.

3.
4.

Mission control needs the following libraries to be present as run-time dependencies. Please ensure these are available before you begin installation.

libcurl3
libltdl7
php5-fpm
net-tools

When you install without these dependancies, the installer displays an error indicating that a number of dependencies are missing, prompting you to
install them along with the install command.

Installation Instructions

Once you have Mission Control, installing it is very straightforward:downloaded

Extract the contents of the compressed file

Installing Mission Control

tar -xvf jfmc-debian-<version>.tar.gz

Run the installer

Installing Mission Control

cd jfmc-debian-<version>
./installJFMC-debian.sh

The log file for the installation will be in a file installJFMC-debian.<timestamp>.log.
A control file is created as part of the installation. Start Mission control using this file

Starting Mission Control

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh start

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh start

CentOS Installation
JFrog Mission Control currently supports CentOS 7.x.

Do not install Mission Control on a higher version of CentOS as it has not been validated to work.

System library requirements

Mission control needs the following libraries to be present as run-time dependencies. Please ensure these are available before you begin installation.

openssl
php-fpm
net-tools

Installation Instructions

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1, Mission Control installed an
instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or databases if you MongoDB Postgres Elasticsearch
have these already installed and in use in your organization.

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's own internal databases, or if
you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

4 JFrog Mission Control Version 2.0 User Guide.pdf

https://jfrog.com/download-mission-control/

1.

2.

3.

1.

Once you have Mission Control, installing it is very straightforward:downloaded

Extract the contents of the compressed file

Installing Mission Control

tar -xvf jfmc-centos-<version>.tar.gz

Run the installer

Installing Mission Control

cd jfmc-centos-<version>
./installJFMC-centos.sh

A control file is created as part of the installation. Start Mission control using this file

Starting Mission Control

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh start

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh start

Ubuntu Installation
JFrog Mission Control currently supports Ubuntu 16.x.

Do not install Mission Control on a higher version of Ubuntu as it has not been validated to work.

System library requirements

Mission control needs the following libraries to be present as run-time dependencies. Please ensure these are available before you begin installation.

libcurl3
libltdl7
php5.6-fpm
net-tools

In order to install "php5.6-fpm" please run the below commands:

apt-get install python-software-properties
add-apt-repository ppa:ondrej/php
apt-get update
apt-get install -y php5.6-fpm

Installation Instructions

Once you have Mission Control, installing it is very straightforward:downloaded

Extract the contents of the compressed file

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1, Mission Control installed an
instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or databases if you MongoDB Postgres Elasticsearch
have these already installed and in use in your organization.

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's own internal databases, or if
you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

5 JFrog Mission Control Version 2.0 User Guide.pdf

https://jfrog.com/download-mission-control/
https://jfrog.com/download-mission-control/

1.

2.

3.
4.

1.

Installing Mission Control

tar -xvf jfmc-ubuntu-<version>.tar.gz

Run the installer

Installing Mission Control

cd jfmc-ubuntu-<version>
./installJFMC-ubuntu.sh

The log file for the installation will be in a file installJFMC-ubuntu.<timestamp>.log.
A control file is created as part of the installation. Start Mission control using this file

Starting Mission Control

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh start

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh start

Red Hat Installation
JFrog Mission Control currently supports Red Hat 7.x.

Do not install Mission Control on a higher version of Red Hat as it has not been validated to work.

System library requirements

Mission control needs the following libraries to be present as run-time dependencies. Please ensure these are available before you begin installation.

openssl
php-fpm
net-tools

Installation Instructions

Once you have Mission Control, installing it is very straightforward:downloaded

Extract the contents of the compressed file

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1, Mission Control installed an
instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or databases if you MongoDB Postgres Elasticsearch
have these already installed and in use in your organization.

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's own internal databases, or if
you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

If you are having any errors with PostgreSQL installation, then please check the following log files "bitrock_installer.log" and "install-
postgresql.log" under /tmp/ folder

6 JFrog Mission Control Version 2.0 User Guide.pdf

https://jfrog.com/download-mission-control/

1.

2.

3.

Installing Mission Control

tar -xvf jfmc-redhat-<version>.tar.gz

Run the installer

Installing Mission Control

cd jfmc-redhat-<version>
./installJFMC-redhat.sh

A control file is created as part of the installation. Start Mission control using this file

Starting Mission Control

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh start

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh start

Installation File Structure
After downloading and extracting the installer, the following file structure is created under the installation folder

install-<flavor>.sh The installation script for specific Linux flavor (Debian/Centos)

config A folder containing files necessary to configure 3rd party services like MongoDB, PHP-FPM, etc.

packages A folder containing the actual packages to install (deb or rpm files)

seed_data A folder containing scripts necessary to seed users/data into 3rd party services

migration A folder containing scripts necessary to migrate from earlier versions of Mission control

version.sh A file containing the version of the JFMC

Mission Control File structure

Home directory
The Mission Control home (/opt/jfrog/) directory will contain files necessary to start and stop all the micro-services associated with JFrog Mission
Control

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1, Mission Control installed an
instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or databases if you MongoDB Postgres Elasticsearch
have these already installed and in use in your organization.

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's own internal databases, or if
you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

7 JFrog Mission Control Version 2.0 User Guide.pdf

mission-control/bin Mission Control service files

mission-control/lib The Mission Control runtime JAR file

mission-control/scripts Control scripts for Mission Control

Microservices and Ports

Docker Installation
Mission Control'sDocker installation only needs port 8080 to be exposed on the host to function.

If the port is occupied, Mission control will throw an error on start.

To change the port that the Docker installation uses, update the property to another value (between 0 and 65535) in the server.port $JFMC_HOME
 file./jfmc/etc/mission-control.properties

Linux Installation
Mission Control runs a number of microservices with specific port allocations as described in the table below.

If a port is already in-use, the installer will display a warning, and in some cases, prompt for a different port.

Microservice Port Purpose Service name in Debian and Centos Installs

Mission Control Server 8080 Core Mission Control service mission-control.service

Scheduler 8085 Manages scheduling for different internal Mission Control tasks jfi-scheduler.service

Executor 8087 Executes tasks to collect data from services jfi-executor.service

Graphs Core 8090 Graphs core functions jfi-core.service

8089 Graphs core functions over SSL

Elasticsearch

9200 Data service used for time-series data to generate graphs elasticsearch.service

9300 Transport client port for bulk inserts

Mongo 27017 Data service used for storing non-time series data mongod.service

Postgres

5432 Data service used by the scheduler microservice postgresql-9.6.service

influx 8088 Maintained to manage migration from version 1.x to version 2.x

Deprecated post 2.1.1

influxdb.service

Data
The Mission Control data folder (usually,) will contain files created and used by each of the micro-services./var/opt/jfrog/mission-control

Status of Installation
Use the following command to check the installation status. Once installation is complete, the same command will provide the status of the services as
well.

Log location

Logs are written into data folder (usually, /logs) and . It is recommended to turn on /var/opt/jfrog/mission-control log rotation is not enabled
log rotation.

8 JFrog Mission Control Version 2.0 User Guide.pdf

1.
2.
3.

a.

b.

c.

d.

e.

4.

Mission Control services status

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh status

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh status

Uninstalling
Use the control file to initiate uninstalling JFrog Mission Control as follows:

Please note that this will not uninstall third-party components installed as part of installation. They will have to be uninstalled manually.

Removing the Mission Control services

For v2.0.0 to v2.1.0,
/opt/jfrog/jfmc/scripts/jfmc.sh removeServices

For v2.1.1,
/opt/jfrog/mission-control/scripts/jfmc.sh removeServices

Secure Access With SSL
JFrog Mission Control supports secure access with SSL. The following example shows how to enable access with SSL using a JKS keystore:

Stop JFrog Mission Control
Consult your Certificate Authority and generate a certificate for your instance of Mission Control
Modify your file as follows:$MC_HOME/etc/mission-control.properties

Comment the line specifying 8080 as the server port () and uncomment the line specifying 8443 as the server server.port=8080
port. When done you should have:

server.port=8080 This line is commented
server.port=8443

Set the path to your keystore in the property. For example:server.ssl.key.store

server.ssl.key-store=path/to/keystore.jks

Uncomment and set the keystore password property:

server.ssl.key-store-password=<Keystore password>

Uncomment and set the keystore type property:

server.ssl.key-store-type=JKS

Save the changes to your file.mission-control.properties

Start JFrog Mission Control

Once you have completed this configuration, you can access JFrog Mission Control through the server port specified in the mission-control.
 file. properties

For example, using the above configuration, you could access Mission Control via SSL using the following URL:

9 JFrog Mission Control Version 2.0 User Guide.pdf

https://<mission-control-server-ip>:8443

Accessing Mission Control
Mission Control can be accessed through your browser using the following URL:

http://SERVER_DOMAIN:<server port>

The default port used by Mission Control is 8080, so a default installation would be accessed at 8080.http://localhost:

Using a different port

 To change the port, in , set .$MC_HOME/etc/mission-control.properties server.port=<port number>

10 JFrog Mission Control Version 2.0 User Guide.pdf

http://localhost:8081/artifactory

1.
2.
3.

Managing Third-Party Components
Overview
Mission Control works with a number of third-party services including various databases. These include:

MongoDB - used for internal Mission Control operations
PostgreSQL - used for internal scheduler and other services
Elasticsearch - used to store historical data

The following sections show how to manage the configuration for these components.

Changing Database Credentials
Mission Control works with various databases which come pre-configured with default credentials for
access by Mission Control. The following sections show how to change these default credentials.

Page Contents

Overview
Changing Database
Credentials

MongoDB
PostgreSQL
Elasticsearch

MongoDB
Mission control creates and uses three MongoDB databases for its operation as described in the following table:

Database name user password role

insight_CUSTOM_ jfrog_insight password dbOwner

insight_team jfrog_insight password dbOwner

mission_platform mission_platform password dbOwner

To change the default credentials for any of these databas, please use the following steps.

Change the MongoDB password
Change the graph_core service password
Update the Mission Control properties file with the new credentials

Changing the Password in MongoDB

Access MongoDB as the each user above
$ mongo --port 27017 -u "jfrog_insight" -p "password" --authenticationDatabase "insight_CUSTOM_"

Switch to the corresponding database above
$ use insight_CUSTOM_

Update the credentials
$ db.updateUser("jfrog_insight",{pwd: "<new_password>"})

Verify the update was successful by logging in with the new credentials
$ mongo --port 27017 -u "jfrog_insight" -p "<new_password>" --authenticationDatabase "insight_CUSTOM_"

Changing the Password in the Graph_Core Service

Update the new credentials into the Mission Control service using the following REST API endpoint

On the host running the services run the following command
$ curl 'localhost:8088/api/settings' -d 'action=set&key=integrations.mongodb.url&value=mongodb:27017' -X POST

Update the Mission Control Properties File

On the host running the services run the following command:

Credentials must match

Note that the and databases must always use the same username and password.insight_CUSTOM_ insight_team

11 JFrog Mission Control Version 2.0 User Guide.pdf

1.
2.

$JFMC_HOME/etc/mission-control.properties, uncomment/set:
spring.data.mongodb.username
spring.data.mongodb.password

PostgreSQL
The default credentials for the internal PostgresSQL database used by Mission Control is:

username: quartzdb

password: insight

To change the default credentials used by Mission control to access its internal PostgreSQL database, you need to log into the database as the
"quartzdb" user and change the password as follows:

Change the password in PostgreSQL
Change the password in the scheduler service

Changing the Password in PostgreSQL

Access PostgreSQL as the quartzdb user adding the optional -W flag to invoke the password prompt
$ psql -d quartzdb -U quartzdb -W

Securely change the password for user "quartzdb". Enter and then retype the password at the prompt.
\password <new_password>

Verify the update was successful by logging in with the new credentials
$ psql -d quartzdb -U quartzdb -W

Changing the Password in the Scheduler Service

On the host running the services run the following command OR within the container (if you are using
docker installation)
$cd $JFI_HOME_SCHEDULER/_MASTER_/data/contexts/settings/

$quartz.properties, uncomment/set:

org.quartz.dataSource.quartzDataSource.user = username
org.quartz.dataSource.quartzDataSource.password = password

Note: Make sure to change authentication settings in the pg_hba.conf to ensure the policies you need are set appropriately.

Elasticsearch
After Mission Control is fully installed, the Elasticsearch binaries and data files can be found under:

 .<JFMC_HOME/elasticsearch>

Mission Control currently uses Elasticsearch without x-pack, therefore, authentication is not needed to access the history database.

12 JFrog Mission Control Version 2.0 User Guide.pdf

Using External Databases
Overview
JFrog Mission Control uses several databases for different features of its operation.

Elasticsearch v5.5.2 stores analytics data used to create . Graphs
PostgreSQL is used for continuous data import and schedulingv9.6
MongoDB is used for configuration managementv3.2.6

Until version 2.1, Mission Control installed an instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own or Elasticsearch, PostgreSQL
 databases if you have these already installed and in use in your organization.MongoDB

It is up to you to choose which, if any of these databases to externalize when you install Mission Control.

During the installation process, the Mission Control installation script will first ask if you want to perform a
standard installation:

Perform a standard Installation? [Y/n]:

If you respond "Y", the installation process will automatically run to completion and install internal
databases for Mission Control to use.

If you respond "n", then for each of the three databases, Mission Control will ask whether you want to
use the internal database or an external one you are already using in your organization.

If you do externalize any of the databases, Mission Control will also ask if you want it to seed the
database or prefer to do it manually.

Page Contents

Overview
Externalizing Elasticsearch

Manually Seeding
Elasticsearch

Externalizing MongoDB
Manually Seeding
MongoDB

Externalizing PostgreSQL
Manually Seeding
PostgreSQL

Externalizing Databases on
an Existing Installation
Changing Externalized
Databases

Externalizing Elasticsearch
To externalize the Elasticsearch database, respond to the prompts as described below:

Prompt Response

Install Elasticsearch? [Y/n]:n "n"

Please enter the Elasticsearch
URL

[http://docker.for.mac.
localhost:9200]:

 Provide the URL to your Elasticsearch database or accept the default if that is correct.

Does this Elasticsearch
instance need credentials?

 "Y" if your Elasticsearch database requires credentials, or "n" if it allows anonymous access.

Please enter the User ID:

Please enter the Password:

Provide your Elasticsearch user ID and password if required.

If you want the installer to seed your database automatically, make sure this user has privileges to
create templates, aliases and indices.

You take full responsibility for your own databases

If you choose to have Mission Control use any of your own databases for its operation, you
take full responsibility for the maintenance, monitoring, backup and correct functioning of
these databases.

13 JFrog Mission Control Version 2.0 User Guide.pdf

Attempt to seed Elasticsearch?
[y/N]: If you respond with , the installer will attempt to perform the following actions to seed the "y"

database automatically:
create the necessary templates and indices
copy all files required to seed the Elasticsearch database to a separate folder to enable
manual seeding at a later time should that be necessary

If the automatic seeding operation fails, the installer will display a prompt asking if you
want to , or .retry abort skip

If you respond with "N", the installer will copy all files required to seed the Elasticsearch
database to a separate folder to enable manual seeding

Manually Seeding Elasticsearch

To use an external Elasticsearch database, Mission Control requires connectivity to the database and the presence of certain templates and aliases.
These are created by the script provided in the installation package using the following process:createIndices.sh

Make the file executable (` `)createIndices.sh chmod +x createIndices.sh
Create the following environment variables (with appropriate values)

ELASTIC_SEARCH_URL
ELASTIC_SEARCH_USERNAME (optional)
ELASTIC_SEARCH_PASSWORD (optional)

Execute the file (` `)./createIndices.sh

Externalizing MongoDB
To externalize the MongoDB database, respond to the prompts as described below:

Prompt Response

Install MongoDB? [Y/n]:n "n"

Please enter the MongoDB Host

[docker.for.mac.localhost]:

Enter the host that MongoDB is available on.
(Usually, `localhost`). NOTE: Do NOT include a
protocol.

Please enter the MongoDB Port [27017]: Enter the port that Mission Control can use to
access MongoDB. (Usually, 27017)

Seed the database before starting JFrog Mission Control

If you choose to seed your database manually, make sure you do so BEFORE starting up JFrog Mission Control .

14 JFrog Mission Control Version 2.0 User Guide.pdf

Attempt to seed MongoDB? [y/N]:

To have the installer seed your MongoDB
automatically, respond with "y"

If you respond with the installer copies the "N",
files you will need to manually seed the database
and ends the installation process.

If you respond with the installer continue and "y"
prompt you with the following questions.

Is this a fresh installation with no users? (If you choose 'y', the
installer will create an admin user):

If you respond , the installer "y"
will prompt you for and admin user
and password

Please enter the MongoDB admin user ID:

Please enter the MongoDB admin user password:

Provide an admin user ID and password

The installer will attempt to perform the following
actions to seed the MongoDB automatically:

create the necessary databases and users
copy all files required to seed the MongoDB
database to a separate folder to enable
manual seeding at a later time should that be
necessary

If the automatic seeding operation fails, the
installer will display a prompt asking if you
want to , or .retry abort skip

Manually Seeding MongoDB

MongoDB is used to store metadata about Mission Control's microservices, so the script attempts to create the necessary databases and users. If you
are familiar with MongoDB or do not have access to the Mongo instance, you can review the file and create these yourself createMongoUsers.js
using the appropriate database client. If not and if you have access to the instance where MongoDB is installed, follow the instructions below:

Copy the files and to the system where MongoDB is running. createMongoUsers.sh createMongoUsers.js
Make the shell file executable ()chmod +x createMongoUsers.sh
Execute the file and follow the prompts on screen. ./createMongoUsers.sh

Externalizing PostgreSQL
To externalize the PostgreSQL database, respond to the prompts as described below:

Prompt Response

Docker installation does not try to automatically seed the database

In a Docker installation, the installer does not attempt to seed the external
MongoDB database. Instead, it copies the files needed for manual seeding as
described in Manually Seeding MongoDB below and the automatic installation
process ends here.

MongoDB must be on the same
machine for automatic seeding

The installer can only seed a MongoDB
database automatically if it is on the
same machine as the installer.

If your MongoDB is installed on another
machine, respond with ."N"

Seed the database before starting JFrog Mission Control

 If you choose to seed your database manually, make sure you do so BEFORE starting up JFrog Mission Control .

15 JFrog Mission Control Version 2.0 User Guide.pdf

Install Postgres? [Y/n]:n "n"

Please enter the Postgres Host

[docker.for.mac.localhost]:

Enter the host that Postgres is available on.
NOTE: Do NOT include a protocol.

Please enter the Postgres Port [5432]: Enter the port that Mission Control can use to
access Postgres. (Usually, 5432)

Attempt to seed Postgres? [y/N]:

To have the installer seed your Postgres
automatically, respond with "y"

If you respond with the installer copies the "N",
files you will need to manually seed the database
and ends the installation process.

If you respond with the installer continue and "y"
prompt you with the following questions.

Please enter the path where Postgres executable (psql) is available: Provide the path to your psql executable

Please enter the ID of the root user:

Please enter the password of the root user:

Provide a root user ID and password

The installer will attempt to perform the following
actions to seed the Postgres automatically:

create the necessary databases and users
copy all files required to seed the Postgres
database to a separate folder to enable
manual seeding at a later time should that be
necessary

If the automatic seeding operation fails, the
installer will display a prompt asking if you
want to , or .retry abort skip

Manually Seeding PostgreSQL

Postgres is used to store jobs by Mission Control's scheduling service, so the script attempts to create a database (default value:), a user quartzdb
and password (default values:).quartzdb:password

The script then attempts to create several tables and indices.

If you are familiar with Postgres or the externalized instance is managed by another user, you can use any database client to create the necessary
database and users and then create the tables in the file .quartz_postgres.sql

If not, and if you have access to the instance where Postgres is installed, follow the instructions below:

Docker installation does not try to automatically seed the database

In a Docker installation, the installer does not attempt to seed the external
Postgres database. Instead, it copies the files needed for manual seeding as
described in Manually Seeding Postgres below and the automatic installation
process ends here.

Postgres DB must be on the same
machine for automatic seeding

The installer can only seed a Postgres
database automatically if it is on the
same machine as the installer.

If your Postgres database is installed on
another machine, respond with ."N"

Seed the database before starting JFrog Mission Control

 If you choose to seed your database manually, make sure you do so BEFORE starting up JFrog Mission Control .

16 JFrog Mission Control Version 2.0 User Guide.pdf

Copy the files and to the system where Postgres is running. createPostgresUsers.sh quartz_postgres.sql
Make the shell file executable ()chmod +x createPostgresUsers.sh
Execute the file and follow the prompts on screen./createPostgresUsers.sh

Externalizing Databases on an Existing Installation
You can externalize the databases Mission Control uses on an existing installation at any time by simply running the installer again.

When prompted with Perform a standard upgrade? [Y/n], select "N".

Now just continue with the process in the same way you would during a new installation as described in above.UsingExternalDatabases

Changing Externalized Databases
Mission Control offers you the flexibility to decide when to externalize its databases, and even to switch externalized databases in case you have more
than one instance of any particular database installed in your system.

When you do externalize a database, the installer creates a file in the installation log folder () to indicate if the database has $JFMC_DATA/installer
been seeded. If, when changing the externalized database, you want the installer to try seeding the new database, make sure to delete the
corresponding file before running the installer.

17 JFrog Mission Control Version 2.0 User Guide.pdf

Elasticsearch Usage Guide
Overview

 is a highly scalable search and analytics engine. It is used to store and retrieve historical Elasticsearch
data for Artifactory services and their repositories, and provide it to Mission Control to display in its Graph

as usage metrics. s module

Version
JFrog Mission Control currently uses .ElasticSearch version 5.6

Resources
Installation Guide
Getting Started
Snapshot and Restore

Page Contents

Overview
Version
Resources

How Elasticsearch is
Packaged within Mission
Control
Installation Structure
Ports
Indexes and Aliases
Index Cleanup

How Elasticsearch is Packaged within Mission Control
Elasticsearch is packaged into the . The following describes the different variations for each distribution package type: Mission Control installation

Distribution Packaging

Docker Elasticsearch for Docker is added as a Docker container to the Mission Control docker-compose project. This installs version 5.5.2.

Debian Elasticsearch 5.6.2 is included in the Mission Control Debian project. Linux service files are added.

RPM Elasticsearch 5.6.2 is included in the Mission Control RPM project. Linux service files are added.

Installation Structure
After Mission Control is fully installed, the Elasticsearch data files can be found in the following locations:

File Location

Binaries <JMFC_HOME>/elasticsearch/

Data files Linux: <JMFC_HOME>/elasticsearch/

Docker: <JMFC_HOME>/elasticsearch/

Ports
Elasticsearch uses the following communication ports:

Service Port

HTTP API 9200

Java Client 9300

Indexes and Aliases
There are two aliases to store and retrieve data:

Alias Name Description

18 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.elastic.co/products/elasticsearch
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374652
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374652
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://docs.influxdata.com/influxdb/v1.1/administration/config/
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://docs.influxdata.com/influxdb/v1.1/troubleshooting/
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
https://www.jfrog.com/confluence/display/MC2X/Installing+Mission+Control#InstallingMissionControl-Installation

active_insight_data Used point to active index to push data.

search_insight_data Used to search and retrieve data

On installation, these aliases and indices of format active_insight_data_timestamp* are created.

Index Cleanup
Mission Control is pre-configured to periodically cleanup indexes to keep data for a period of one year.

19 JFrog Mission Control Version 2.0 User Guide.pdf

1.

2.

Migrating Data From InfluxDB to Elasticsearch
Overview
Mission Control 1.x used InfluxDB to store historical data on Artifactory's usage and storage. Starting
from version 2.0, Mission Control will use a new Elasticsearch database to store this data.

After completing your Mission Control upgrade to version 2.0, the migration of data from InfluxDB to
Elasticsearch can be started.

Page contents

Overview
Getting Started

Script User Inputs
Migration Folder
Structure

Triggering the Migration
Docker Installation
Debian and RPM
Installation

Troubleshooting
Common errors
and resolutions

Getting Started
The following script execution process will take place once the migration is triggered:

Historical data is exported from InfluxDB to CSV files.
The script will try to sequentially export data from the , and tables hour_data_policy, day_data_policy week_data_policy and year_data_policy
in the database. Any issues in data export will be reported during this step.
The CSV files are converted and imported into Elasticsearch.
This script is interactive and will ask for user inputs.

Script User Inputs
The migration script will prompt you to enter the following parameters:

Parameters Data required

Provide a working directory for writing the logs
 <./influxmigration/>.folder

A working directory to store logs and other data files.
Press Enter to use the default ./influxmigration/ folder.

Provide the for Elasticsearch baseurl
<http://elasticsearch:9200/>.

The URL end point for Elasticsearch.
For a Docker based installation, press to use the default value (Enter http://elasticsearch:
9200/).
For Debian and RPM installs, provide the path where Elasticsearch is installed. Usually this
would be on the localhost (http://localhost:9200/).

Provide the for authentication with username
Elasticsearch.

The username for authentication.Elasticsearch
If no authentication was used in Elasticsearch, press to bypass this step.Enter

Provide the for authentication with password
Elasticsearch.

The Elasticsearch password.
This appears only if a username was provided in the previous step.

Provide the for full path to the CSV location
conversion <./influxmigration/csv/>.

The path from which to pick the CSV files.
Press to use the default path or provide the correct path if you have changed the Enter
working directory in the previous step.

Once the script is complete, it will summarize the information provided and will prompt for a confirmation before the import action is triggered.

Migration Folder Structure
Intermediate files and logs are stored in the following locations:

Migration is Optional

If you're interested in your historical data, there is no need to migrate it. not Mission Control
will start collecting data using Elasticsearch from version 2.0.

After the migration is complete the InfluxDB will continue to be available for use if you require
it.

The migration script uses Gawk 3 and above. For more information, refer to the Gawk user
guide.

Troubleshooting

Check the troubleshooting section below for any errors with the execution.

20 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC/Installation+and+Upgrade
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html

Files Path

Migration logs <jfmc_installation_folder>/influxmigration/logs

Exported CSV data <jfmc_installation_folder>/influxmigration/csv

JSON chunks <jfmc_installation_folder>/influxmigration/data

Triggering the Migration
Migrating historical data from InfluxDB to Elasticsearch can be triggered using the migration commands below.

During the migration process, you will need to provide the input parameters as described under .Script Input Parameters

InfluxDB and Elasticsearch need to be running. You can refer the the to get more information. InfluxDB JFrog User Guide

Docker Installation
Navigate to the Mission Control installation folder and execute the migrate command:

cd <jfmc_installation_folder>
mission-control migrateToElastic

Debian and RPM Installation
Navigate to the Mission Control installation folder and execute the migrate command:

Note: The Influx installation folder () is generally at . influxdb_installation_folder /opt/jfrog/mission-control/influxdb/usr/bin

cd <jfmc_installation_folder>
cp migration/* <influxdb_installation_folder>
cd <influxdb_installation_folder>
./migrateInfluxToElastic.sh

Troubleshooting
Detailed run logs will be available in the logs folder. The log for the current execution is located here:configured

.<installation_folder>/influxmigration/logs/log.out

If the script stops executing without any errors, check the log file for more details.

Common errors and resolutions

Cause This happens in Debian/RPM installs where the script cannot find the InfluxDB executable used to export data to CSV format.

Resolution Move the migration script to the InfluxDB installation folder before executing.
Usually this folder is located here: /opt/jfrog/mission-control/influxdb/usr/bin

Cause Missing InfluxDB data folder

Resolution Issue the following command:

curl -G " " --data-urlencode "q=show databases"http://localhost:8086/query?pretty=true

This should show you if you have the mission_control InfluxDB. If you don't, it likely that you have not copied the InfluxDB data
directory.

Cause This happens when data exported from InfluxDB to CSV files has failed for some reason.

Resolution Check previous errors if any and re-execute the script.

21 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC1X/InfluxDB+Usage+Guide

Cause This happens because Gawk needs to be upgraded.

Resolution Install Gawk version 3 and higher.

Cause This happens when the script has detected an earlier run of the migration script. More details will be provided following this message
in the standard out.

Resol
ution

In such cases, a repeated run of the script will create an extra index in Elasticsearch with the same time-series data.
Although this use-case is undesirable, it will not affect the data integrity in the database. Even if there are multiple runs of migration,
since the inserted data is of the same time-series, it will not affect the graphs in the UI

22 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.gnu.org/software/gawk/manual/gawk.html

1.
2.
3.
4.

Upgrading Mission Control
Overview
The procedure to upgrade Mission Control depends on your installation type. We strongly recommend
reading through this page before proceeding with your upgrade. Detailed upgrade instructions are
provided below for the following installation types:

Docker
Standalone ZIP file
CentOS
Ubuntu
Red Hat
Debian

Page Contents

Overview
Download

Docker Upgrade
Standalone
Upgrade
Centos Upgrade
Ubuntu Upgrade
RedHat Upgrade
Debian Upgrade

Migrating Your Data

Download
You can download the latest version of Mission Control in all its formats from its on JFrog Bintray.download page

Docker Upgrade
To upgrade Mission Control that is run as a Docker installation, please refer to . Running with Docker

Standalone Upgrade

Upgrading Mission Control is a simple process during which all of your instance data, repository data and configuration scripts remain intact.

Upgrading Mission Control involves the following basic steps:

Backing up files
Installing the new version
Replacing backed-up files
Reconnecting to managed instances

Backing Up Files

If you have modified either of or , save a copy of these files in a $MC_HOME/etc/mission-control.properties $MC_HOME/etc/logback.xml
temporary location.

Installing the New Version

Removing InfluxDB

If you are upgrading from a previous version of Mission Control that used InfluxDB to store graph data, the upgrade script will suggest
removing the InfluxDB installation.

Upgrading from versions below 1.3 to versions 1.3 and above?

When upgrading from versions below 1.3 to version 1.3 and above, you first need to delete $MC_HOME/data/storage
/instanceConfigDescriptors before you proceed with the upgrade.

1.
2.

Upgrading a standalone or ZIP installation from below version 1.6 to 2.x

From version 2.0, Mission Control does not support a standalone or ZIP installation. If you are running a standalone or ZIP installation of
Mission Control that is below version 1.6, upgrading to version 2.x is a two step process:

First upgrade to version 1.6 as a Docker installation.
Then upgrade the Docker installation to the latest version

For details, please refer to .Upgrading Mission Control under Running with Docker

23 JFrog Mission Control Version 2.0 User Guide.pdf

https://bintray.com/jfrog/product/mission-control/download
https://www.jfrog.com/confluence/display/MC2X/Running+with+Docker#RunningwithDocker-UpgradingMissionControl
https://www.jfrog.com/confluence/display/MC2X/Running+with+Docker#RunningwithDocker-UpgradingMissionControl

1.
2.
3.

To install the new version of Mission Control, unzip the distribution archive in a temporary location and replace the following files and folders with the
corresponding ones from the newly unzipped archive.

under $MC_HOME :

$MC_HOME/data
$MC_HOME/etc
$MC_HOME/logs

Replacing Backed-up Files

Replace the files you backed up in the upgraded installation.

Reconnecting to Services

To reconnect to Artifactory following an upgrade, you need to upload the Mission Control extensions to Artifactory as follows:

When , from the menu, click viewing the details of a service Actions Upload Extensions.

Add Services to Sites

Once you have reconnected to services, make sure to add them to sites in your system so they can be fully managed by Mission Control

Repeat this for all the Artifactory services being managed by Mission Control.

Centos Upgrade

To upgrade Mission Control that is run as an Centos, download the latest version and browse to its location on your file system.

Execute the following command:

Centos Upgrade

sudo su
service mission-control stop
tar -xvf jfmc-centos-<version>.tar.gz
cd jfmc-centos-<version>
./installJFMC-centos.sh

Upgrading from versions below 1.3 to versions 1.3 and above?

When upgrading from versions below 1.3 to version 1.3 and above, your first step should be to delete $MC_HOME/data/storage
/instanceConfigDescriptors before you proceed with the upgrade.

24 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Managing+Services#ManagingServices-ViewingaService

Ubuntu Upgrade
To upgrade Mission Control that is run as a Ubuntu installation, download the latest version and browse to its location on your file system.

Execute the following commands:

Ubuntu Upgrade

sudo su
service mission-control stop
tar -xvf jfmc-ubuntu-<version>.tar.gz
cd jfmc-ubuntu-<version>
./installJFMC-ubuntu.sh

RedHat Upgrade
To upgrade Mission Control that is run as a RedHat installation, download the latest version and browse to its location on your file system.

Execute the following commands:

Redhat Upgrade

sudo su
service mission-control stop
tar -xvf jfmc-redhat-<version>.tar.gz
cd jfmc-redhat-<version>
./installJFMC-redhat.sh

Debian Upgrade
To upgrade Mission Control that is run as a Debian installation, download the latest version and browse to its location on your file system.

Execute the following commands:

Externalizing a Database?

Mission Control gives you the option to externalize one or more of its databases during an upgrade.

To externalize a database, when prompted with , respond with and then follow the Perform a standard Installation? [Y/n]: "n"
prompts as described in . Using External Databases

Externalizing a Database?

Mission Control gives you the option to externalize one or more of its databases during an upgrade.

To externalize a database, when prompted with , respond with and then follow the Perform a standard Installation? [Y/n]: "n"
prompts as described in . Using External Databases

Externalizing a Database?

Mission Control gives you the option to externalize one or more of its databases during an upgrade.

To externalize a database, when prompted with , respond with and then follow the Perform a standard Installation? [Y/n]: "n"
prompts as described in . Using External Databases

25 JFrog Mission Control Version 2.0 User Guide.pdf

Debian Upgrade

sudo su
service mission-control stop
tar -xvf jfmc-debian-<version>.tar.gz
cd jfmc-debian-<version>
./installJFMC-debian.sh

Migrating Your Data
Following an upgrade from a version 1.x to 2.0 and above, if you want to Mission Control to continue providing historical data you collected with
version 1.x, you need to migrate your data. For details, please refer to . Migrating Data from InfluxDB to Elastic Search

Externalizing a Database?

Mission Control gives you the option to externalize one or more of its databases during an upgrade.

To externalize a database, when prompted with , respond with and then follow the Perform a standard Installation? [Y/n]: "n"
prompts as described in . Using External Databases

26 JFrog Mission Control Version 2.0 User Guide.pdf

Running with Docker
Mission Control as a Docker Image
Mission Control can be installed as a Docker image and run as a container. To do this, you need to have
Docker client properly installed and configured on your machine. For details about installing and using
Docker, please refer to the .Docker documentation

If you are running on a Windows or Mac, you need to install the Docker native client. Please note the we
have only tested Docker installations on Linux and Mac.

Image Contents
The Mission Control Docker image contains the following components:

Debian jessie 8
OpenJDK
Installation of Mission Control

Page Contents

Mission Control as a
Docker Image

Image Contents
License
Download and Installation

Download
Installation

Upgrading Mission Control
Interacting with the Docker
Installer
Microservices
Migrating data from 1.5.x to
2.0
Accessing Mission Control

Default Admin
User

License
Mission Control itself is provided for free and has no license requirements. However, while you may view any Artifactory service from Mission Control,
you may only configure and see relationships between services that are activated with an .Artifactory Enterprise license

Download and Installation

Download
The JFrog Mission Control Docker installer can be downloaded from the .Mission Control Download Page

Installation

Viewing Artifactory OSS, Artifactory Pro and Artifactory SaaS

You may add services of Artifactory OSS, Artifactory Pro to Mission Control, but for these instances, you can only view basic information.
You cannot perform any actions on these services through Mission Control.

As a shared managed service, Artifactory SaaS is maintained for you by JFrog and can not be managed by Mission Control.

However, if you are running Artifactory SaaS as a , this can be fully managed by Mission Control.dedicated server

Keep Mission Control on your $PATH

Make sure to save the downloaded file in one of the locations defined in your $PATH environment variable so it is accessible from
anywhere on your machine.

Before you begin

Since Mission Control uses Elastic Search as its database for historical data, you need to set the mmap count to a larger value than default
to avoid any memory leaks. Please refer to this .recommendation from Elastic Search

To set the mmap count, run this command:

sysctl -w vm.max_map_count=262144

27 JFrog Mission Control Version 2.0 User Guide.pdf

https://docs.docker.com/
https://bintray.com/jfrog/product/mission-control/download
https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html#vm-max-map-count

1.

2.

3.

The JFrog Mission Control Docker image may be installed on any platform supporting Docker CE v17.x and above. To install Mission Control as a
Docker image, follow the instructions below:

Make executablemission-control
To give the Mission Control installation script execute privileges on your machine, run:

chmod +x mission-control

Install Mission Control
The installation process will prompt you for a "root folder". You may keep the default (current) location or specify another location on your
machine. Choose this location carefully since you may not change it later, and this is where JFrog Mission Control saves its data,
configuration files and logs. The Mission Control installer will only prompt you for this location for initial installation. It is stored for later use
when upgrading.
To install Mission Control, simply run:

./mission-control install

Start Mission Control

./mission-control start

Upgrading Mission Control
Upgrading Mission Control may vary slightly depending on your current version and the new version you are upgrading to.

Download the latest installation script as described . above
Stop your current installation of Mission Control using the following command:

./mission-control stop

 Run the upgrade according to your version as follows:

Docker Volume Mount

If requested at any time during the installation or upgrade process, make sure to provide the correct path to your Docker volume mount in
the likely event that you're not using the default specified in the installation and upgrade scripts.

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1, Mission Control installed an
instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or databases if you MongoDB Postgres Elasticsearch
have these already installed and in use in your organization.

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's own internal databases, or if
you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

Note that for a Docker installation, Mission Control cannot seed an external MongoDB or Postgres database and requires you to se
.ed these databases manually

Working in the Docker container

 You can work in the Docker container using:

docker exec -it <container name> /bin/bash

28 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=MC2X&title=Installation+and+Upgrade&linkCreation=true&fromPageId=69374443

To upgrade from version 1.6 and above, run

./mission-control upgrade

./mission-control start

To upgrade from version 1.5.x and below, you first need to upgrade to version 1.6 and then upgrade to version 2.x.

To upgrade from version 1.5.x and below to version 1.6, first download the JFrog Mission Control 1.6
 and then run:insatallation script

./mission-control install

./mission-control start

Note that this is not an error. The script's function is used to upgrade from version mission-control install
1.5.2 and below to version 1.6 and above to ensure that future upgrades work as intended.
Then, to upgrade to version 2.x, run the latest installation script you downloaded as described (Both above
installation scripts have the same name, so be careful not to confuse them):

./mission-control upgrade

Start Mission Control

./mission-control start

Interacting with the Docker Installer
In addition to managing installation, the installation script can provide additional information or perform additional tasks on your mission-control
installation such as restarting Mission Control, displaying log files and more. For details, run:

./mission-control help

Microservices
Mission Control 2.0 is composed of several microservices that manage different aspects of the product:

server jfmc_server_1 Primary Mission Control service

Using External Databases

JFrog Mission Control uses several databases for different features of its operation. Until version 2.1,
Mission Control installed an instance of all of these databases dedicated for its own use.

From version 2.1, Mission Control gives you the option of using your own , or MongoDB Postgres Elast
 databases if you have these already installed and in use in your organization.icsearch

When you run the installer, it will issue prompts asking if you want to install Mission Control using it's
own internal databases, or if you prefer to use your own external databases.

For details on how to respond to these prompts, please refer to .Using External Databases

Note that for a Docker installation, Mission Control cannot seed an external MongoDB or Postgres
database and requires you to .seed these databases manually

Upgrading from older versions or ZIP installation

If you are upgrading from an older version that was installed without the installation script, or you previously
installed Mission Control as a , you may be prompted for the "root folder". Make sure standalone ZIP installation
to specify the same MC_HOME folder your current installation is using.

29 JFrog Mission Control Version 2.0 User Guide.pdf

https://bintray.com/jfrog/jfrog-mission-control/mc-docker-installer/1.6.1
https://bintray.com/jfrog/jfrog-mission-control/mc-docker-installer/1.6.1
https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=MC2X&title=Installation+and+Upgrade&linkCreation=true&fromPageId=69374443
https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=MC2X&title=Installation+and+Upgrade&linkCreation=true&fromPageId=69374443

core jfmc_core_1 Handles core functions of for managing graph data

scheduler jfmc_scheduler_1 Manages scheduling for different internal Mission Control tasks

executor jfmc_executor_1 Executes tasks related to data management

elasticsearch jfmc_elasticsearch_1 The database used for all time-series data used to generate graphs

postgres jfmc_postgress_1 Database used by the scheduler

mongodb jfmc_mongodb_1 Database used by the core

influxdb jfmc_influxdb_1 Database used by Mission Control

Migrating data from 1.5.x to 2.0
Mission Control 1.5.x and above used InfluxDB to store the historical data for graphs. Starting Mission Control 2.0, is the store for this Elasticsearch
data. To migrate the existing data in InfluxDB to Elasticsearch, please refer to this .document

Accessing Mission Control
Mission Control can be accessed at the following URL:

http://localhost:8080

Default Admin User
Once installation is complete, Mission Control has a default user with admin privileges predefined in the system:

User: admin

Password: password

Change the admin password

We strongly recommend changing the admin password as soon as installation is complete.

30 JFrog Mission Control Version 2.0 User Guide.pdf

Configuring Mission Control
Overview
The Mission Control module provides access to a variety of configuration screens as well as Admin
scripting and other functionality as follows:

Scripts Create and modify service configuration scripts and configure how they are managed
in version control.

Proxy Define and configure proxies through which Mission Control will access the services
under its control.

Security Add and modify users and their privileges in Mission Control.

Notification
s Group

Define usage policies and thresholds that specify when notifications will be sent and
configure a mail server through which to send them.

Licenses Manage license buckets or individual licenses for specific services.

DR Configure Master and Target pairs for disaster recovery.

Page Contents

Overview
Scripts

Version Control
Configuring Proxies
Configuring Users
Mail
Notifications
Licenses
Disaster Recovery

Read More

Scripts
Scripts are an easy way to define standard, repeatable and automated configuration for the different managed services.

To access your library of scripts, under the module select Admin Scripts | Scripts Lib.

For full details on how to work with scripts, please refer to . Configuration Scripts

Version Control
Mission Control supports versioning for configuration scripts in a Git repository. To configure a Git repository for configuration script versions, in the Ad

 module select .min Scripts | Version Control

For details, please refer to . Git Integration

Configuring Proxies
For each managed service, you can configure a proxy through which Mission Control will access it.

To view the list of proxies configured, in the module, select .Admin Proxy | Config proxy

31 JFrog Mission Control Version 2.0 User Guide.pdf

To edit or delete a proxy, hover over the proxy's row in the list and click the corresponding icon.

To create a new proxy, click .Create Proxy

Name A logical name for this proxy

URL The proxy URL

User Name A user name required to access the proxy server (optional).

Password The password required to access the proxy server (optional).

Configuring Users
To manage users in Mission Control, in the module select .Admin Security | User Management

Mission Control users vs. Artifactory users

Be careful not to confuse this feature with managing users in the services managed by Mission Control.

32 JFrog Mission Control Version 2.0 User Guide.pdf

To edit or remove an existing user, click the corresponding link in the user's row in the table.

To create a new Mission Control user, click "Create User".

Fill in the fields and click "Submit"

Mail
Mission Control sends email notifications to users for different events that occur; for example, notifications that are generated due to storage policies
that are defined for instances or repositories.

To enable mail notifications, you need to configure Mission Control with your mail server details in the Admin module under .Notifications Group | Mail

MC password

The Mission Control password must be at least 8 characters long and contain both letters and numbers.

33 JFrog Mission Control Version 2.0 User Guide.pdf

Enable Enables the configured mail server

Host The host name of the mail server.

Port The port of the mail server.

Username The username for authentication with the mail server.

Password The password for authentication with the mail server.

From The "from" address header to use in all outgoing mails.

Subject Prefix A prefix to use for the subject of all outgoing mails.

Use SSL/TLS When set, uses Transport Layer Security when connecting to the mail server.

Send Test Mail Click to send a test message to the specified email address.

Notifications
Mission control can send email notifications based on policies you define for instances and repositories. For example, you can configure Mission
Control to send an email message if any Artifactory instance exceeds a limit for usage of storage. For details, please refer to .Notifications

Licenses
The module provides access to the Update Licenses and License Bucket screens where you can manage licenses for specific services or Admin
license buckets for a group of services. For details, please refer to under .Licenses Managing Services

Disaster Recovery
The module provides access to the Disaster Recovery screen where you can configure Master and Target pairs of Artifactory services. For Admin
details, please refer to . Disaster Recovery

34 JFrog Mission Control Version 2.0 User Guide.pdf

Configuration Scripts
Overview
Mission control embraces the configuration-as-code approach and uses scripts to configure the services
that it manages. Scripts are reusable pieces of code which can be applied to one or more services at a
time to perform a variety of actions. These can range from simple configurations, such as setting a new
caching policy for a set of remote repositories in an Artifactory service, to more complex ones like
creating a combination of local and remote repositories in a master-slave topology, or even to set up
watches in a managed Xray service.

Here is a simple example of a configuration script that creates a local repository that will be a Docker regi
stry in a managed Artifactory service called "Art1":

artifactory('Art1'){
 localRepository("docker-local") {
 packageType "docker"
 description "My local Docker registry"
 }
}

Using configuration scripts presents several benefits for the management of services under Mission
Control

 Configuration scripts improve your efficiency by enabling you to automate your Automation:
service configuration tasks, preventing the need to perform repetitive and error prone manual
configuration, especially when managing multiple services.

Configuration scripts improve the reliability of your configuration tasks by letting you Reliability:
reuse the same configuration on multiple services that may also be running on different runtime
environments (e.g. development, staging, production).

Configuration scripts can be used to enforce standards when configuring Standardization:
things such as repository names, include/exclude patterns, caching policies and more.

Page Contents

Overview
Working with Scripts

Script Library
Running a Script

Selecting
a Script
to Run
Editing a
Script
Entering
User
Input
Doing a
Dry Run
Executing
a Script

Creating and Editing Scripts
Using the Script
Editor

Block
Templates

Using an External
Editor

Script Elements
Service Closures
Configuration
Blocks
Properties
Example

User Input
Input Types and
Properties
Example

Global Variables
Running Scripts via REST
API
Migrating Scripts from
Version 1.x to Version 2.x

Best Practices
Aggregati
ng Scripts
Dry Run

Best Practices

Read More

Configuration DSL
Git Integration

Working with Scripts
Scripts are written using the and are managed under version control in a Git repository. This allows you to edit scripts Groovy programming language
directly in your Git provider's editor, or using any other editor you prefer to work with. Once your scripts are committed to your Git repository, Mission
Control accesses them using the configuration you specify under and is automatically synchronized with any additions or deletions you Git Integration
make from the Git repository.

Scripting in version 2.x

In version 2.0, scripting in Mission Control underwent significant changes. Any scripts written
for Mission Control v1.x will not work and need to be migrated. For details, please refer to Migr

.ating Scripts from Version 1.x to Version 2.x

35 JFrog Mission Control Version 2.0 User Guide.pdf

http://groovy-lang.org/

Script Library
Scripts are managed in the Script Library which can be accessed from the module under Hovering over an item in the Admin Scripts | Script Lib.
library displays icons that let you , or the script. Scripts are maintained in a MongoDB database which can only be accessed by delete edit run
Mission Control. If you have configured , all scripts will be synchronized with the Git repository specified.Git Integration

Running a Script
Running a script involves the following steps:

Selection - select the script you want to run out of the list
Editing - make any edits needed to the script
Providing input - provide any input required by the script
Dry run - do a dry run of the script to ensure there are no errors
Execute - execute the script

Create vs. Update

 Mission Control scripts are written in the same way whether they create new entities or just update them. If the relevant entity (service or
repository) already exists on the target service, then it will just be updated with the parameters specified in the script. If the entity does not
exist, it will be created with the parameters specified. Any optional parameters not specified will take default values.

For example, consider this simple script :

artifactory('Art1'){
 localRepository("maven-local-dev") {
 packageType "maven"
 description "This is my Maven repository for development"
 }
}

If the "Art1" Artifactory service already has a Maven repository called "maven-local-dev", its description will be updated to the value
provided. If the repository does not exist, it will be created with the description provided and all other parameters set to their default values.

Note that when doing a on a script, Mission Control will show the changes that the script will implement in the case of an update.dry run

36 JFrog Mission Control Version 2.0 User Guide.pdf

1.

2.

These main steps are described in more detail in the sections below.

Selecting a Script to Run

There are two ways to select a script to run:

Selecting from the Mission Control top ribbon. This will present the list of scripts available in your script libraryRun Script

Select the script you want to run and click "Next".
Hovering over the script in the Script Library and clicking the icon.Run

Both of these actions will take you to the next step of editing the script.

Editing a Script

The tab lets you make any changes necessary to the script to meet the specific needs of the current run. Edit Script

Tweak, don't make big changes

This feature was designed to let you make minor changes that you may need to make to accommodate slightly different scenarios to which
you would apply a script. To make significant changes to a script, we recommend modifying the script using an external editor and
committing it to your Git repository.

37 JFrog Mission Control Version 2.0 User Guide.pdf

Note that you cannot modify the name or description of an existing script.

Click "Save" to save your changes.

Click "Next" to move on to the next step of adding user input.

Entering User Input

This is the step in which you provide any user input required by the script you are running.

Saving changes commits them to Git

 Note that if you have a defined for your scripts, saving your changes will commit them to Git.Git repository

Syntax Errors

If there are any syntax errors in your script, Mission Control will display an alert. You need to fix the error in order to proceed.

38 JFrog Mission Control Version 2.0 User Guide.pdf

Enter the user input required and click "Next" to move on to the next step of testing your script in a dry run.

Doing a Dry Run

The dry run does not execute the script, but let's you know what changes will be implemented on the selected services and repositories when you do.
To see the changes, click the the summary line.

If there are invalid instructions in your script, Mission Control will display an error. You need to fix the error in order to proceed.

For example, if you have written a script that updates an Artifactory service called "Art1", but there is no such service recognized by Mission
Control, then this is an error.

39 JFrog Mission Control Version 2.0 User Guide.pdf

To do a dry run, accept the changes your script will make and click "Run".

Executing a Script

If the dry run is successful, you can click to actually execute the code in the script. Take care, and note that this time, any changes Run New Script
programmed into your script will actually be executed on the corresponding services and repositories.

Upon successful execution, Mission Control will again display the list of scripts available for you to run.

At any step along the way, you can stop the process of running a script by clicking "Cancel", or by clicking "End and Close" in the Execute step.

40 JFrog Mission Control Version 2.0 User Guide.pdf

Creating and Editing Scripts
As described above, scripts are written in Groovy.

There are two ways to create and edit scripts:

Using an external editor
Using the Script Editor

Using the Script Editor
To create a script from within Mission Control, select in the Scripts Library. To edit the script select the "Edit" icon while hovering over Add New Script
the script's entry in the . Script Library

Once in the script editor you can create and/or edit the script as needed. When done, click "Save" to save the script. If a Git repository is configured,
Mission Control will commit your changes.

Block Templates

As a convenience, Mission Control offers configuration blocks as built-in templates that you can use when creating or editing scripts. The templates
available are exposed by typing the first few letters and then or to show the auto-complete options. When you select a ctrl + space shift + space
template from the list, Mission Control will insert it into your script with all the parameters of the selected configuration block.

Example 1

The example below shows how to insert an Artifactory service and Local repository template:

Example 2

The example below shows how to add an Xray service template:

Use and external editor

As a best practice, we recommend creating scripts outside of Mission Control using your preferred editor and then committing them to the
Git repository configured in the page.Version Control

When you have a Git repository configured in the page, Mission Control will commit any new scripts you create in the script Version Control
editor to the Git repository and commit new versions when you edit the scripts.

41 JFrog Mission Control Version 2.0 User Guide.pdf

Using an External Editor
You can create or edit scripts using any external editor. Just make sure to commit any changes to the Git repository configured in the pVersion Control
age.

Script Elements
Scripts are constructed from Service Closures, Configuration Blocks and Properties. Scripts are very flexible, and can contain any number of service
closures, each of which may contain any number of configuration blocks and properties.

For a complete list and full specification of service closures, configuration blocks and properties available, please refer to . Configuration DSL

Service Closures
Service closures define the service (Artifactory or Xray) that the script acts on. Artifatory or Xray services can only be created or modified through
configuration blocks which must be enclosed in service closures.

Configuration Blocks
Configuration blocks define the parameters or changes that should be implemented on the services specified in their enclosing service closures.

Properties
Properties are used to configure the relevant parameters of a configuration block.

Example
The simple example script below shows:

An Artifactory closure that includes a configuration block that creates a generic local repository called "generic-local" on an Artifactory
service called "Art1". The configuration block includes a property that specifies the package type for the repository
An Xray closure that called "X1" to the Artifactory service "Art1" for indexing. connects an Xray service

Configuration blocks must be in service closures

A configuration block must be placed inside a service closure that specifies the service on which it should be applied.

42 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/XRAY/Configuring+Xray#ConfiguringXray-ConnectingtoArtifactory

1.

2.

Example script

artifactory('Art1') {
 localRepository('generic-local') {
 packageType "generic"
 }
}

xray('X1') {
 binaryManager('Art1')
}

User Input
Static configuration scripts can be useful in some cases. For example, when you would like to create a property set with pre-defined properties. In
other cases you need the script to be more dynamic. For example, when creating a new repository you might want to provide the repository name only
when the script is applied.

To create more dynamic configuration scripts, the Mission Control configuration DSL lets you ask for user input when the script is applied.

There are two ways of declaring that you would like to get user input:

Asking for user input for a specific property

localRepository("my-repository") {
 description userInput (
 type : "STRING",
 value : "This is a generic description",
 description : "Please provide a description"
)
}

In this example, we ask the user to provide a value for the property of a repository.description

Assigning the user input to a variable and using the variable

name = userInput (
 type : "STRING",
 value : "This is a generic description",
 description : "Please provide a repository name"
)

localRepository(name) {
 ...
}

In this example, the value of the variable is used in a Groovy string to create the repository name. name

When a configuration script with user input is applied, Mission Control will generate a form that prompts you for all user input fields defined. The user
applying the script will need to provide the input fields in order to proceed with a dry run and execution of the script.

Don't use "def"

Take care not to use "def" when declaring user input for a script (e.g.). When using def, the script name = userInput...def
will not work correctly as it will refer to the user input object rather than the dynamic value entered by the user

43 JFrog Mission Control Version 2.0 User Guide.pdf

Input Types and Properties
When requesting user input in a script, you need to specify the following parameters:

type This can take one of the following values:

STRING - the input is a simple string

BOOLEAN - the input is a simple boolean

INTEGER - the input is a simple integer

SERVICE - the input is one of the services managed by Mission Control. The user input screen will display a list of services for the
user to select from.

ARTIFACTORY - the input is an Artifactory service managed by Mission Control. The user input screen will display a list of
Artifactory services for the user to select from.

REPOSITORY - the input is a repository in an Artifactory service managed by Mission Control. The user input screen will display a
list of Artifactory services for the user to select from.

XRAY - the input is an Xray service managed by Mission Control. The user input screen will display a list of Xray services for the
user to select from.

PACKAGE_TYPE - The input is one of the package types supported by Artifactory (e.g. "docker", "npm" "debian"). For a full list of
supported package types, please refer to in the Artifactory User Guide.Repository Configuration JSON

value
(Optional)

A default value. If a default value is not specified, the variable becomes mandatory and the user must provide the input string.

multivalued
(Optional)

When true, mission control will allow the user to provide more than one value. The following types can take multiple values:
SERVICE, ARTIFACTORY, XRAY, REPOSITORY

description
(Optional)

A description to be displayed in the web UI

According to the input type requested, once entered, the script has access to different properties related to the input value as described in the table
below:

44 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json

Input Type Property
Name

Property Type Description

SERVICE, ARTIFACTORY
or XRAY

name String Service name in mission control

url String Service URL

type EntityType (enum) Service type (ARTIFACTORY, XRAY)

description String Service description

credentials Credentials Service credentials, ex: credentials.userName,
credentials.password

REPOSITORY

url String Service URL

repository LocalRepositoryImpl, RemoteRepositoryImpl,
VirtualRepositoryImpl

Repository properties as described in Repository
Configuration JSON

Example
The following script requests a target Artifactory service as user input to create a replication relationship with another Artifactory service called
"LocalK".

Once the target instance has been provided, the script uses its property to specify its repository as the replication target.url maven-local

targetArtifactory = userInput (
 name : "Target Artifactory",
 type : "ARTIFACTORY",
 description : "please provide the artifactory instance you want to replicate to"
)

artifactory('Local') {
 localRepository("maven-local") {
 replication {
 url "${targetArtifactory.url}/maven-local"
 username targetArtifactory.credentials.userName
 password targetArtifactory.credentials.password
 cronExp "0 0/9 14 * * ?"
 socketTimeoutMillis 15000
 }
 }
}

Global Variables
 In addition to the objects and properties available to scripts as a result of user input, scripts also have access to a global variable called .services

The variable is a map of all services being managed by Mission Control and provides access to the service object using its property services name
as the key.

For example, if Mission Control is managing an Artifactory service called "Art1" and an Xray service called "X1", a script can access these service
objects using the following lines:

def serviceArtifactory = services['Art1']
def serviceXray - services['X1']

Once the respective service objects are acquired, the script can then reference the different properties such as name, url, description etc. as
described in the table above.

Running Scripts via REST API
The REST API for interacting with and running scripts has changed in Mission Control 2.0. For details, please refer to in the Mission Control SCRIPTS
REST API documentation.

45 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=MC2X&title=Mission+Control+REST+API-2.0+-+CORRUPTED+-+FOR+DELETION&linkCreation=true&fromPageId=69373791

Migrating Scripts from Version 1.x to Version 2.x

In version 2.0 JFrog Mission Control scripting functionality underwent several changes. The most significant change is in how you select which
services to apply the script to.

In version 1.x, you could create scripts that operated on Artifactory instances and repositories, but would only have to select those instances and
repositories when actually running the script.

From version 2.0 any operations on services (whether Artifactory or Xray) must be enclosed in a (as described above) that specifies service closure
the service on which the script should be applied. While the specific service may also be entered with user input, the enclosing closure must be
present in the script. As a result, you need to migrate all scripts written for version 1.x and . enclose the content of the script in a service closure
The following example shows how a simple script written for version 1.x would be migrated to be compatible with version 2.x

Example
Create a local Docker registry called "docker-local" in an Artiafctory service.
In version 1.x, the Artifactory service would be selected during the flow of running the script.
In version 2.x we add an closureartifactory

Script in version 1.x Script migrated for version 2.x

localRepository("docker-
local") {
 packageType "docker"
 description "My local
Docker registry"
}

Option 1: Specify a specific Artifactory service called "Art1"

artifactory('Art1'){
 localRepository("docker-local") {
 packageType "docker"
 description "My local Docker registry"
 }
}

Option 2: Let the user select the Artifactory service with user input:

whichArtifactory = userInput (
 type : "ARTIFACTORY",
 name : "Which Artifactory",
 description : "Please specify the Artifactory service on which to
create the repository"
)

artifactory(whichArtifactory.name){
 localRepository("docker-local") {
 packageType "docker"
 description "My local Docker registry"
 }
}

Best Practices
Here are some best practices that we recommend you follow when migrating your scripts to Mission Control 2.0 and above:

Aggregating Scripts

In version 1.x, Mission Control scripts could only perform one action, and were limited to acting either on an Artifactory instance, or on a repository.
From version 2.0 scripting is much more flexible and scripts can be written to perform any number of actions. We recommend taking a series of small,
single-action scripts and aggregating them into a larger script that preforms several functions.

Dry Run

To make sure you have migrated your scripts correctly, we recommend doing a dry run and verifying the changes that Mission Control would make if
you were to actually run the script.

Following an upgrade of Mission Control from version 1.x to version 2.x, all scripts created with version 1.x should be available in the Script
 of version 2.x.Library

46 JFrog Mission Control Version 2.0 User Guide.pdf

Best Practices
To learn more about configuration scripts by example, check out of scripts for Mission Control.JFrog's public GitHub repository

These scripts provide best practices for writing scripts related to:

Creating a single generic repository
Onboarding a team of users
Setting up replication relationships including implementation of a Star Topology and Mesh Topology

We recommend watching this repository for updates with more script examples.

47 JFrog Mission Control Version 2.0 User Guide.pdf

https://github.com/jfrog/jfrog-mission-control-2.0

Configuration DSL
Overview
Mission Control comes with a comprehensive set of built-in configuration blocks that are intended as
guides to make it easier for you to define configuration scripts using the allowed DSL.

Artifactory Configuration Blocks
This section presents configuration blocks that can be used to configure different administrative features
of Artifactory services. As with any configuration block, these must be placed within an Artifactory service

 as shown below.closure

Artifactory service closure

artifactory('<Artifactory service name>'){

 <configuration blocks>

}

Page Contents

Overview
Artifactory Configuration
Blocks

Property Sets
Repository Layout
Proxies
LDAP Settings
LDAP Groups
Security Settings

Repository Configuration
Blocks

Local Repository
Remote
Repository
Virtual Repository
Replication
Star Topology

Push
Replication
Pull
Replication

Xray Configuration Blocks
Link to Artifactory
- Binary Manager
Watches

Property Sets
The parameters for a configuration block are described below. For more details on these parameters, please refer to in propertySets Property Sets
the .Artifactory User Guide

propertySets block

propertySets {
 propertySet('property_set_name') {
 singleSelect('property_name') {
 defaultValue "value_1"
 value "value_1"
 value "value_2"
 }
 multiSelect('property_name_multi') {
 defaultValue "value_1"
 defaultValue "value_2"
 value "value_1"
 value "value_2"
 }
 anyValue('another_property_name') {
 defaultValue "value_1"
 value "value_1"
 }
 }
}

property_set_name An identifier for this property set. The name must be unique in all Artifactory instances on which it is applied.

singleSelect parameters

property_name A unique identifier for the single selection property within this property set.

defaultValue A default value for the single selection property.

value The selection options for this property

Configuration blocks must be in service closures

 Note that the script segments described on this page represent configuration blocks and
cannot be used by themselves. Configuration blocks be placed within a must service closure
in order to create an executable script.

48 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures
https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures
https://www.jfrog.com/confluence/display/RTF/Properties#Properties-PropertySets
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory
https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures

multiSelect parameters

property_name_multi A unique identifier for the multiple selection property within this property set.

defaultValue The default selected values for the multiple selection property.

value The selection options for this property

anyValue parameters

another_property_name A unique identifier for the free-text property within this property set.

defaultValue A default value for the free-text property.

value The selection options for this property

Repository Layout
The parameters for a configuration block are described below. For more details on these parameters, please refer to repoLayout Repository Layouts
 in the .Artifactory User Guide

repoLayout block

repoLayouts {
 repoLayout ('repo_layout_name') {
 folderIntegrationRevisionRegExp "SNAPSHOT"
 fileIntegrationRevisionRegExp "SNAPSHOT|(?:(?:[0-9]{8}.[0-9]{6})-(?:[0-9]+))"
 distinctiveDescriptorPathPattern true
 artifactPathPattern "[orgPath]/[module]/[baseRev](-[folderItegRev])/[module]-[baseRev](-[fileItegRev])(-
[classifier]).[ext]"
 descriptorPathPattern "[orgPath]/[module]/[baseRev](-[folderItegRev])/[module]-[baseRev](-[fileItegRev])
(-[classifier]).pom"
 }
}

repo_layout_name An identifier for this repository layout. The name must be unique in all Artifactory instances on which it is
applied.

folderIntegrationRevisionRegE
xp

A regular expression for folder integration revision.

fileIntegrationRevisionRegExp A regular expression for file integration revision.

distinctiveDescriptorPathPattern A distinctive descriptor path pattern is used to recognize descriptor files.

artifactPathPattern The typical structure in which all module artifacts are expected to be stored.

descriptorPathPattern The pattern used to recognize descriptor files (such as or files)..pom ivy.xml

Proxies
The parameters for a configuration block are described below. For more details on these parameters, please refer to in proxies Managing Proxies
the .Artifactory User Guide

proxies {
 proxy('proxy_key') {
 host 'proxy host' // mandatory
 port 8888 // mandatory
 username 'username'
 password 'password'
 defaultProxy false
 ntHost 'NT Host'
 ntDomain 'NT Domain'
 redirectedToHosts (['host1', 'host2', 'host3'])
 }
}

49 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Repository+Layouts
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory
https://www.jfrog.com/confluence/display/RTF/Managing+Proxies
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

proxy_key The ID of the proxy. Must be unique within the Artifactory instance.

host The name of the proxy host.

port The proxy port number

username The proxy username when authentication credentials are required.

password The proxy password when authentication credentials are required.

defaultProxy When true, this proxy will be the default proxy for new remote repositories and for internal HTTP requests.

ntHost The computer name of the machine (the machine connecting to the NTLM proxy).

ntDomain The proxy domain/realm name.

redirectedToHosts An optional list of newline or comma separated host names to which this proxy may redirect requests.

LDAP Settings
The parameters for an configuration block are described below. For more details on these parameters, please refer to ldap Managing Security with

 in the .LDAP Artifactory User Guide

ldap {
 settings('settings_name') {
 url 'ldap://myserver:myport/DC=sampledomain,DC=com' // mandatory
 userDnPattern 'uid={0},ou=People'
 emailAttribute 'mail'
 enabled true // default value - true
 autoCreateUser true // default value - true
 search {
 filter '(uid={0})'
 base 'OU=dev,DC=sampledomain,DC=com'
 searchSubTree true
 managerDn 'CN=admin,OU=ops,DC=sampledomain,DC=com'
 managerPassword 'password'
 }
 }
}

settings_na
me

The ID of the LDAP setting. Must be unique within the Artifactory instance being configured.

url Location of the LDAP server in the following format: .ldap://myserver:myport/dc=sampledomain,dc=com

userDnPatte
rn

A DN pattern used to log users directly in to the LDAP database. This pattern is used to create a DN string for "direct" user
authentication, and is relative to the base DN in the LDAP URL.

emailAttribute An attribute that can be used to map a user's email to a user created automatically by Artifactory.

enabled When true, these settings are enabled.

autoCreate
User

When true, Artifactory will automatically create new users for those who have logged in using LDAP, and assign them to the
default groups.

filter A filter expression used to search for the user DN that is used in LDAP authentication.

base The Context name in which to search relative to the base DN in the LDAP URL. This is parameter is optional.

searchSubT
ree

When true, enables deep search through the sub-tree of the LDAP URL + Search Base.

managerDn The full DN of a user with permissions that allow querying the LDAP server.

managerPa
ssword

The password of the user binding to the LDAP server when using "search" authentication.

50 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Security+with+LDAP
https://www.jfrog.com/confluence/display/RTF/Managing+Security+with+LDAP
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

LDAP Groups
The parameters for an configuration block are described below. For more details on these parameters, please refer to in ldap groups LDAP Groups
the .Artifactory User Guide

ldap {
 groupSettings('static_group_settings_name') {
 settings // 'ldap settings ref'
 staticMapping {
 groupMemberAttribute 'uniqueMember' // mandatory
 groupNameAttribute 'cn' // mandatory
 descriptionAttribute 'description' // mandatory
 filter '(objectClass=groupOfNames)' // mandatory
 searchBase ''
 searchSubTree true
 }
 }
 groupSettings('dynamic_group_settings_name') {
 settings // 'ldap settings ref'
 dynamicMapping {
 groupMemberAttribute 'uniqueMember' // mandatory
 groupNameAttribute 'cn' // mandatory
 descriptionAttribute 'description' // mandatory
 filter '(objectClass=groupOfNames)' // mandatory
 searchBase ''
 searchSubTree true
 }
 }
 groupSettings('hierarchy_group_settings_name') {
 settings // 'ldap settings ref'
 hierarchyMapping {
 userDnGroupKey 'uniqueMember' // mandatory
 groupNameAttribute 'cn' // mandatory
 descriptionAttribute 'description' // mandatory
 filter '(objectClass=groupOfNames)' // mandatory
 }
 }
}

static_group_settings_name A logical name for a group mapping strategy.static

dynamic_group_settings_name A logical name for a group mapping strategy.dynamic

hierarchy_group_settings_name A logical name for a group mapping strategy.hierarchy

settings The LDAP settings reference.

groupMemberAttribute The group membership attribute for this LDAP group.

groupNameAttribute The group name attribute for this LDAP group.

descriptionAttribute The description attribute for this LDAP group.

filter A filter expression used to search for the user DN that is used in LDAP authentication.

searchBase The Context name in which to search relative to the base DN in the LDAP URL.

searchSubTree When true, enables deep search through the sub-tree of the LDAP URL + Search Base.

Security Settings
The configuration blocks for security settings related to users, groups and permissions are described below. For more details on these parameters,
please refer to in the .Configuring Security Artifactory User Guide

51 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/LDAP+Groups
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory
https://www.jfrog.com/confluence/display/RTF/Configuring+Security
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

security {
 users {
 conflictResolutionPolicy "OVERRIDE" // default
 user('name') {
 email 'login_1@jfrog.com'
 password 'passwd_1'
 admin false
 profileUpdatable false
 internalPasswordDisabled false
 groups (['groupA', 'groupB']) // values (['groupA', 'groupB']) are examples. Please set existing
values from the instance
 }
 }

 groups {
 conflictResolutionPolicy "OVERRIDE" // default
 group('name') {
 description 'desc_1'
 autoJoin false
 }
 }

 permissions {
 conflictResolutionPolicy "OVERRIDE" // default
 permission('name') {
 includesPattern '**'
 excludesPattern ''
 anyLocal false
 anyRemote false
 anyDistribution false
 repositories (["local-rep1", "local-rep2"]) // values (["local-rep1", "local-rep2", ...]) are
examples. Please set existing values from the instance
 users {
 userA (['manage', 'delete', 'deploy', 'annotate', 'read']) // value userA - is example. Please set
existing user names from the instance
 }
 groups {
 groupsG1 (['manage', 'delete', 'deploy', 'annotate', 'read']) // value groupsG1 - is example. Please
set existing group names from the instance
 }
 }
 }
}

Users block Creates or updates in the instanceusers

conflictRe
solutionPo
licy

Default: OVERRIDE

Specifies what to do if any setting in the users block of the configuration script conflicts with an existing value for the specified user.
Currently, the only option available is the default OVERRIDE which means that values specified in the configuration script will
override any existing values.

email The user's email address.

password The user's login password.

admin When true, this user is an administrator with all the ensuing privileges

profileUpd
atable

When true, this user can update their profile details (except for the password. Only an administrator can update the password).

internalPa
sswordDis
abled

When true, disables the fallback of using an internal password when external authentication (such as LDAP) is enabled.

groups Specifies the groups to which this user should belong

52 JFrog Mission Control Version 2.0 User Guide.pdf

Groups
block

Creates or updates in the instancegroups

conflictRe
solutionPo
licy

Default: OVERRIDE

Specifies what to do if any setting in the groups block of the configuration script conflicts with an existing value for the specified user.
Currently, the only option available is the default OVERRIDE which means that values specified in the configuration script will
override any existing values.

description A free text description for the group.

autoJoin When true, any new users defined in the system are automatically assigned to this group.

Permission
s block

Creates or updates in the instance.permission targets

conflictRe
solutionPo
licy

Default: OVERRIDE

Specifies what to do if any setting in the permissions block of the configuration script conflicts with an existing value for the specified
user. Currently, the only option available is the default OVERRIDE which means that values specified in the configuration script will
override any existing values.

includesP
attern/
excludesP
attern

"Ant-like" expressions that specify repositories and paths to be included or excluded from the permission target

anyLocal When true, all local repositories are included in the permission target.

anyRemote When true, all remote repositories are included in the persmission target.

anyDistrib
ution

When true, all distribution repositories are included in the permission target.

repositories Specific repositories on which to apply the permission target.

users The users on whom to apply the permission target and the corresponding permissions they are given.

groups The groups on which to apply the permission target and the corresponding permissions they are given.

Repository Configuration Blocks
This section presents all the configuration blocks that may be used to configure Artifactory repositories.

Local Repository
The parameters for a block are described below. For more details on these parameters, please refer to and localRepository Common Settings Lo

 in the .cal Repositories Artifactory User Guide

53 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Common+Settings
https://www.jfrog.com/confluence/display/RTF/Local+Repositories
https://www.jfrog.com/confluence/display/RTF/Local+Repositories
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

localRepository block

localRepository('repository-key') {
 description "Public description"
 notes "Some internal notes"
 includesPattern "**/*" // default
 excludesPattern "" // default
 repoLayoutRef "maven-2-default"
 packageType "generic" // "maven" | "gradle" | "ivy" | "sbt" | "nuget" | "gems" | "npm" | "conan" | "helm" |
 // "bower" | "debian" | "pypi" | "docker" | "vagrant" |
"gitlfs" | "yum" | "generic"
 debianTrivialLayout false
 checksumPolicyType "client-checksums" // default | "server-generated-checksums"
 handleReleases true // default
 handleSnapshots true // default
 maxUniqueSnapshots 0 // default
 snapshotVersionBehavior "unique" // "non-unique" | "deployer"
 suppressPomConsistencyChecks false // default
 blackedOut false // default
 propertySets // (["ps1", "ps2"])
 archiveBrowsingEnabled false
 calculateYumMetadata false
 yumRootDepth 0
 xrayIndex false
 blockXrayUnscannedArtifacts false
 xrayMinimumBlockedSeverity "" // "Minor" | "Major" | "Critical"
 enableFileListsIndexing ""
 yumGroupFileNames ""
}

repository-key The Repository Key is a mandatory identifier for the repository and must be unique within an Artifactory instance. It cannot
begin with a number or contain spaces or special characters.

For local repositories we recommend using a "-local" suffix (e.g. "libs-release-local").

description A free text field that describes the content and purpose of the repository.

notes A free text field to add additional notes about the repository. These are only visible to the Artifactory administrator and to
Mission Control.

includesPattern
and
excludesPattern

These parameters provide a way to filter out specific repositories when trying to resolve the location of different artifacts.

repoLayoutRef Sets the layout that the repository should use for storing and identifying modules. The layout should correspond to the
value set in the packageType property.

packageType The repository's package type.

debianTrivialLayo
ut

Only valid if is set to Debian. If true, the Debian repository will use the Trivial layout.packageType

checksumPolicyTy
pe

Only valid if for Maven, Gradle, Ivy and SBT repositories. Determines how Artifactory behaves when a client checksum for
a deployed resource is missing or conflicts with the locally calculated checksum.

handleReleases If true, users will be able upload Release artifacts to this repository

handleSnapshots If true, users will be able upload Snapshot artifacts to this repository

maxUniqueSnaps
hots

Specifies the maximum number of unique snapshots of the same artifact that should be stored. A value of 0 (default)
indicates that there is no limit on the number of unique snapshots.

snapshotVersionB
ehavior

Artifactory supports centralized control of how snapshots are deployed into a repository, regardless of end user-specific
settings. This can be used to guarantee a standardized format for deployed snapshots within your organization.

suppressPomCon
sistencyChecks

If true, Artifactory will reject a deployment in which the set in the path conflicts with the groupId:artifactId:version
deployed path.

blackedOut If true, Artifactory will ignores this repository when trying to resolve, download or deploy artifacts.

54 JFrog Mission Control Version 2.0 User Guide.pdf

http://groupidartifactidversion/

propertySets Defines the property sets that will be available for artifacts stored in this repository.

archiveBrowsingE
nabled

If true, allows uses to view archive file contents (e.g., Javadoc browsing, HTML files) directly from Artifactory.

calculateYumMeta
data

Only valid for YUM repositories. If true, YUM metadata calculation will be automatically triggered for the events described
in .Triggering RPM Metadata Updates

yumRootDepth Only valid for YUM repositories. Informs Artifactory under which level of directory to search for RPMs and save the repoda
 directory.ta

xrayIndex If true, this repository should be indexed by JFrog Xray connected to the Artifactory instance.

blockXrayUnscan
nedArtifacts

If true, artifacts that have not yet been scanned by the connected JFrog Xray will be blocked for download.

xrayMinimumBloc
kedSeverity

The minimum severity of an issue detected for an artifact to be blocked for download.

enableFileListsInd
exing

For an RPM repository, this field specifies if the RPM file lists metadata file should be indexed by Artifactory or not.

Remote Repository
The parameters for a remote block are described below. For more details on these parameters, please refer to and Repository Common Settings R

 in the .emote Repositories Artifactory User Guide

55 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/YUM+Repositories#YUMRepositories-TriggeringRPMMetadataUpdates
https://www.jfrog.com/confluence/display/RTF/Common+Settings
https://www.jfrog.com/confluence/display/RTF/Remote+Repositories
https://www.jfrog.com/confluence/display/RTF/Remote+Repositories
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

remoteRepository block

remoteRepository('repository-key') {
 url "http://host:port/some-repo"
 username "remote-repo-user"
 password "pass"
 proxy "proxy1"
 description "Public description"
 notes "Some internal notes"
 includesPattern "**/*" // default
 excludesPattern "" // default
 packageType "generic" // "maven" | "gradle" | "helm" | "ivy" | "sbt" | "nuget" | "gems" | "npm" | "bower"
| "debian" | "pypi" | "docker" | "yum" | "vcs" | "p2" | "generic"
 remoteRepoChecksumPolicyType "generate-if-absent" // default | "fail" | "ignore-and-generate" | "pass-thru"
 handleReleases true // default
 handleSnapshots true // default
 maxUniqueSnapshots 0 // default
 suppressPomConsistencyChecks false // default
 offline false // default
 blackedOut false // default
 storeArtifactsLocally true // default
 socketTimeoutMillis 15000
 localAddress "123.123.123.123"
 retrievalCachePeriodSecs 43200 // default
 failedRetrievalCachePeriodSecs 30 // default
 missedRetrievalCachePeriodSecs 7200 // default
 unusedArtifactsCleanupEnabled false // default
 unusedArtifactsCleanupPeriodHours 0 // default
 fetchJarsEagerly false // default
 fetchSourcesEagerly false // default
 shareConfiguration false // default
 synchronizeProperties false // default
 propertySets // (["ps1", "ps2"])
 allowAnyHostAuth false // default
 enableCookieManagement false // default
 xrayIndex false
 blockXrayUnscannedArtifacts false
 xrayMinimumBlockedSeverity "" // "Minor" | "Major" | "Critical"
 enableFileListsIndexing ""
}

repository-
key

Please refer to the description for this parameter in a block.Local Repository

url The URL for the remote repository. Currently only HTTP and HTTPS URLs are supported.

username The username that should be used for HTTP authentication when accessing the remote proxy.

password The password that should be used for HTTP authentication when accessing the remote proxy.

proxy If the organization in which the Artifactory instance is hosted requires users to go through a proxy to access a remote repository,
this parameter lets you select the corresponding Proxy Key.

description Please refer to the description for this parameter in a block.Local Repository

notes Please refer to the description for this parameter in a block.Local Repository

includesPat
tern

Please refer to the description for this parameter in a block.Local Repository

excludesPa
ttern

Please refer to the description for this parameter in a block.Local Repository

packageTy
pe

Please refer to the description for this parameter in a block.Local Repository

56 JFrog Mission Control Version 2.0 User Guide.pdf

remoteRep
oChecksu
mPolicyType

Specifies how the Artifactory instance should behave when a client checksum for a remote resource is missing or conflicts with the
locally calculated checksum.

handleRele
ases

Please refer to the description for this parameter in a block.Local Repository

handleSna
pshots

Please refer to the description for this parameter in a block.Local Repository

maxUnique
Snapshots

Please refer to the description for this parameter in a block.Local Repository

suppressP
omConsist
encyChecks

Please refer to the description for this parameter in a block.Local Repository

offline If true, the repository will be considered offline and no attempts will be made to fetch artifacts from it.

blackedOut Please refer to the description for this parameter in a block.Local Repository

storeArtifac
tsLocally

If true, artifacts from the repository will be cached locally. If not set, direct repository-to-client streaming is used.

socketTime
outMillis

The time that the Artifactory instance should wait for both a socket and a connection before giving up on an attempt to retrieve an
artifact from a remote repository.

localAddress When working on multi-homed systems, this parameter lets you specify which specific interface (IP address) should be used to
access the remote repository.

retrievalCa
chePeriodS
ecs

Defines how long before the Artifactory instance should check for a newer version of a requested artifact in a remote repository. A
value of 0 means that Artifactory will always check for a newer version.

missedRetr
ievalCache
PeriodSecs

If a remote repository is missing a requested artifact, Artifactory will return a "404 Not found" error. This response is cached for the
period of time specified by this parameter. During that time, Artifactory will not issue new requests for the same artifact. A value of
0 means that the response is not cached and Artifactory will always issue a new request when demanded.

unusedArtif
actsCleanu
pPeriodHo
urs

Specifies how long an unused artifact will be stored in the Artifactory instance before it is removed. A value of 0 means that the
artifact is stored indefinitely.

fetchJarsE
agerly

If true, if a POM is requested, the Artifactory instance attempts to fetch the corresponding jar in the background. This will
accelerate first access time to the jar when it is subsequently requested.

fetchSourc
esEagerly

If true, if a binaries jar is requested, the Artifactory instance attempts to fetch the corresponding source jar in the background. This
will accelerate first access time to the source jar when it is subsequently requested.

synchroniz
eProperties

Only valid for . If true, properties for artifacts that have been cached in the repository will be updated if Smart Remote Repositories
they are modified in the artifact hosted at the remote Artifactory instance.

propertySets Please refer to the description for this parameter in a block.Local Repository

allowAnyH
ostAuth

If true, allows using the repository credentials on any host to which the original request is redirected.

enableCoo
kieManage
ment

If true, the repository will allow cookie management to work with servers that require them.

xrayIndex Please refer to the description for this parameter in a block.Local Repository

blockXrayU
nscannedA
rtifacts

Please refer to the description for this parameter in a block.Local Repository

xrayMinimu
mBlockedS
everity

Please refer to the description for this parameter in a block.Local Repository

57 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Smart+Remote+Repositories

enableFileL
istsIndexing

For an RPM repository, this field specifies if the RPM file lists metadata file should be indexed by Artifactory or not.

Virtual Repository
The parameters for a virtual block are described below. For more details on these parameters, please refer to and Repository Common Settings Vir

 in the .tual Repositories Artifactory User Guide

virtualRepository block

virtualRepository('repository-key') {
 repositories (["local-rep1", "local-rep2"]) // values (["local-rep1", "local-rep2", ...]) are examples.
Please set existing values from the instance
 description "Public description"
 notes "Some internal notes"
 includesPattern "**/*" // default
 excludesPattern "" // default
 packageType "generic" // "maven" | "gradle" | "helm" | "ivy" | "sbt" | "nuget" | "gems" | "npm" | "bower"
| "pypi" | "p2" | "generic"
 debianTrivialLayout false
 artifactoryRequestsCanRetrieveRemoteArtifacts false
 keyPair "keypair1" //value "keypair1" is example. Please set existing value from the instance
 pomRepositoryReferencesCleanupPolicy "discard_active_reference" // default | "discard_any_reference" |
"nothing"
 defaultDeploymentRepo "local-rep1"
}

repository-key Please refer to the description for this parameter in a block.Local Repository

repositories The list of repositories that should be aggregated in this virtual repository.

description Please refer to the description for this parameter in a block.Local Repository

notes Please refer to the description for this parameter in a block.Local Repository

includesPattern Please refer to the description for this parameter in a block.Local Repository

excludesPattern Please refer to the description for this parameter in a block.Local Repository

packageType Please refer to the description for this parameter in a block.Local Repository

debianTrivialLayout Please refer to the description for this parameter in a block.Local Repository

artifactoryRequestsCanRetrieveR
emoteArtifacts

If true, the virtual repository should search through remote repositories when trying to resolve an artifact
requested by another Artifactory instance.

keyPair A named key-pair to use for automatically signing artifacts.

pomRepositoryReferencesCleanu
pPolicy

This setting gives you the ability to ensure Artifactory is the sole provider of Artifacts in your system by
automatically cleaning up the POM file.

Replication
A replication block is used for creating push/pull replication. This block should always be nested inside a repository block: for localRepository
push replication, for pull replication or a block for both.remoteRepository repository

58 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Common+Settings
https://www.jfrog.com/confluence/display/RTF/Virtual+Repositories
https://www.jfrog.com/confluence/display/RTF/Virtual+Repositories
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

1.
2.

replication block

localRepository("example") {
 replication(<REPLICATION_TARGET>) {
 cronExp "0 0/9 14 * * ?"
 socketTimeoutMillis 15000
 username "remote-repo-user"
 password "pass"
 proxy //"proxy-ref"
 enableEventReplication true
 enabled true
 syncDeletes false
 syncProperties true
 clientTlsCertificate ""
 }
}

REPLICAT
ION_TAR
GET

Target local repository for push replication. There are two ways to provide a target repository:

Target repository URL - the URL of the target local repository (String)
Target Artifactory object - the service object the target repository belongs to. This applies when creating a new only
repository.
Mission control will select the repository about to be created on the target instance within the current configuration context
(current configuration action). An instance object can be obtained from the context variables or by asking for user input of type
ARTIFACTORY.

For pull replication there is no need to set the target repository

cronExp Define the replication task schedule using a valid expressioncron

socketTim
eoutMillis

The network timeout in milliseconds to use for remote operations

username The HTTP authentication username

password The HTTP authentication password

proxy The key of a proxy configuration to use when communicating with the remote instance

enableEve
ntReplicati
on

When set, event-based push replication is enabled

enabled When set to true, this replication will be enabled

syncDeletes When set, items that were deleted remotely should also be deleted locally

syncProper
ties

When set, the task also synchronizes the properties of replicated artifacts

clientTlsCe
rtificate

The SSL/TLS certificate used for authentication

Star Topology
Mission Control provides built-in configuration blocks that make it very easy to create replication relationships between different Artifactory services in
a star topology. This is done using the following two key words to create push replication and pull replication configurations respectively:

starPush
starPull

Push Replication

The example below shows how to create a star topology using push replication.

59 JFrog Mission Control Version 2.0 User Guide.pdf

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

This example shows:

An Artifactory service named "Amsterdam" with two local repositories, "maven-local-1" and "maven-local-2"
The configuration block will create or update a push replication relationship between "maven-local-1" and "maven-local-2" in "Amsterdam" to
the corresponding repositories in each of the Artifactory services named "Bangkok", "Cape Town" and "Denver".
If "maven-local-1" or "maven-local-2" do not already exist in any of the target Artifactory services, Mission Control will create them

multipush replication block

artifactory('Amsterdam') {
 repository("maven-local-1", "maven-local-2") {
 starPush('Bangkok', 'Cape Town', 'Denver')
 }
}

Pull Replication

The example below shows how to create a star topology using pull replication.

60 JFrog Mission Control Version 2.0 User Guide.pdf

This example shows:

An Artifactory service named "Amsterdam" with two repositories, "maven-local" and "maven-virtual"
The configuration block will create or update a pull replication relationship in corresponding repositories in each of the Artifactory services
named "Bangkok", "Cape Town" and "Denver" to pull replicate from the "maven-local" and "maven-virtual" repositories in "Amsterdam" .
If "maven-local" or "maven-remote" don't exist in "Bangkok", "Cape Town" or "Denver", Mission Control will create them

multipush replication block

artifactory('Amsterdam') {
 repository("maven-local", "maven-virtual") {
 starPull('Bangkok', 'Cape Town', 'Denver')
 }
}

Xray Configuration Blocks
This section presents configuration blocks that can be used to configure different administrative features of Xray services. As with any configuration
block, these must be placed within an Xray as shown below.service closure

Artifactory service closure

xray('<Xray service name>'){

 <configuration blocks>

}

Link to Artifactory - Binary Manager

61 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures

The following is an example of a configuration block that adds an Artifactory service as a binary manager to an Xray service.

If is already registered as a service in Mission Control, the admin login credentials specified when registering will be provided to Artifactory-prod
Xray when configuring it as the binary manager.

{
 binaryManager('Artifactory-prod')
}

If is not registered as a service in Mission Control, you need to provide all properties of the service as follows:Artifactory-prod

{
 binaryManager('Artifactory-prod') {
 url 'http://artifactory.com/artifactory'
 login 'login'
 password 'password'
 }
}

In this case, Mission Control will create an Artifactory service with these properties and then configure the Xray service in the enclosing service
 with it as its binary manager. closure

Watches
Below is an example of a configuration block. For more details on these parameters, please refer to in the . watch Watches JFrog Xray User Guide

{
 watch('watch') {
 binaryManagerId 'binaryManagerId'
 targetType 'repository'
 description 'description'
 active true
 postActions {
 emails(['email1@email.com', 'email2@email.com'])
 slacks 'slacks'
 webhooks(['webhook1', 'webhook2'])
 failBuild true
 }
 filters {
 filter {
 type 'license_black'
 value 'value1'
 }
 filter {
 type 'regex'
 value 'value1'
 }
 }
 repoType 'repoType'
 severity 'severity'
 system true
 targetName 'targetName'
 temp true
 }
}

62 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures
https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-ServiceClosures
https://www.jfrog.com/confluence/display/XRAY/Watches
https://www.jfrog.com/confluence/display/XRAY/Welcome+to+JFrog+Xray

Git Integration
Overview
In addition to storing and managing in an internal database, Mission Control also configuration scripts
lets you synchronize them to a version control systems allow versioning, sharing and collaboration on
scripts as well as allowing you to create scripts using any editor you prefer. Currently, the only VCS
system supported is Git.

This section describes how to configure Mission Control to manage configuration scripts in a Git
repository.

Page Contents

Overview
Configuring Git Integration

Configuring Git Integration
To configure Mission Control to access the Git repository where you host your configuration scripts, in the module, select Admin Scripts | Version

.Control

You can access your Git account using your username and password or via SSH.

Check and fill in the details of the integration.Enable Git

Remote URL URL to the Git repository where scripts will be hosted. You may only work with the master branch and it must exist before being
configured in Mission Control. You may access the Git repository via SSH, and in this case, the User Name and Password fields
may remain empty.

User Name A valid Git user with and permissions.pull push

Password Password for the Git account. This only needs to be provided when initially enabling Git integration, or if the password was
updated.

Bidirectional When set, scripts can be developed externally to Mission Control (in the user’s IDE), then pushed to Remote URL and loaded
into Mission Control.

Note that empty scripts do not get synchronized to your Git repository.

Using SSH to access your Git account?

When using SSH to access your Git account, you don’t need to enter your username and password.

Note also that your keys must to be under the folder of the machine on which Mission Control is running.~/.ssh

63 JFrog Mission Control Version 2.0 User Guide.pdf

Restore
scripts from
repository

When set, scripts are loaded from the Git repository to Mission Control immediately after the configuration is saved.

64 JFrog Mission Control Version 2.0 User Guide.pdf

Exploring Sites
Overview
A site, in Mission Control, represents a set of managed services grouped into geographical locations.
This gives you an easy way to identify the various services managed by Mission Control according to
their physical proximity to each other and manage them as a group.

The site explorer is your landing page into Mission Control and can present your sites either on a or map
as a . You can toggle between these two views with the toggle at the top right corner of the screen.list

Page Contents

Overview
Map View
List View

Managing a site
Creating a Site
Viewing a Site
Selecting Services
within a Site
Filtering Services
within a Site

Map View

List View

65 JFrog Mission Control Version 2.0 User Guide.pdf

Managing a site
Creating, editing and deleting a site can be done in the from the Actions menu and in the .Map View List View

Map View List View

Creating a Site
To create a new site, click "Create Site" in the or select "Create Site" from the menu in the List View Actions Map View.

A site that contains services cannot be deleted. All services needs to be removed 1st and than delete the site.

66 JFrog Mission Control Version 2.0 User Guide.pdf

Site Name A logical name for the site.

Description A description of the site (optional).

Location The name of the city in which the site is located. You can specify more than one site in a city.

Viewing a Site
The site page allows you to view details on the services within a site.

It is sectioned into three parts:

Services List All services within the site. Select a from the list to highlight it in the connections diagram below.service
Click on a specific service to view its .service page

Connections
Diagram

A visual representation of the connections between the services, and connections to external services in other sites.
Hover over the connections and services to view additional details such as replication type and service status.

External
Connections

Displays a list of other sites that have services connected to services in this site. In the example below, JFIL is a site that has 2
service connections to services in the GCP-EU site.

67 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Managing+Services#ManagingServices-ViewinganArtifactoryService

Selecting Services within a Site
To view details on a specific service in a site, select it from the Service List or directly from the Connections view. Hover over the service to see
additional details on it.

68 JFrog Mission Control Version 2.0 User Guide.pdf

Filtering Services within a Site
To find a service within a site, filter it by type and name.

69 JFrog Mission Control Version 2.0 User Guide.pdf

Managing Services
Overview
Artifactory and Xray services are managed in Mission Control grouped together within . Each a site
service managed by Mission Control must be contained within a site.

The services module displays all services.

Adding Services
Once you have created your sites, you can add services to them according to their geographical
locations.

To add a service click "Add Service" from the or the module.Header Services

Page contents

Overview
Adding Services
Viewing All Services
Viewing an Artifactory
Service

Storage Summary
Replication
License
HA
Task Summary
System Info

Viewing an Xray Service
Editing and Deleting a
Service
Troubleshooting

Fill in the service details and click "Test Connectivity" to check your authorization. Make sure to select the type of service you are adding, Artifactory or
Xray.

Once the connectivity is ok and select the site to add the service to. If you do not have a site to add your service to, click ."Create Site"

JFrog Mission Control will validate the service and connect to it. Once added, your service will be assigned to the specified site and displayed in the
Service module.

Existing Artifactory services are automatically assigned to a site

When upgrading to Mission Control 2.0, any Artifactory services already managed by your
current version of Mission Control will be assigned to new Sites that will be created according
to the location of your Artifactory instances. For example, an Artifactory service located in San
Fransisco, will be assigned to a new site in Mission Control that's located in San Fransisco.

Services without a location will be added to the "Default" site. Create your sites based on your
datacenter and add your services to them.

70 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Exploring+Sites#ExploringSites-Creatingasite

Name A logical name for the service.

Type The service type. Artifactory or Xray.

URL The service URL.

Description A description of the service (optional).

User Name The service administrator user name.

Password The service administrator password.

Proxy The proxy through which MC accesses the service (optional).

Sites The site to assign your service to.

Once the connectivity is ok, click "Next".

71 JFrog Mission Control Version 2.0 User Guide.pdf

Select the site to add the service to, and click "Add". If you do not have a site to add your service to, click ."Create Site"

JFrog Mission Control will validate the service and connect to it. Once added, your service will be assigned to the specified site and displayed in the
Service module.

Viewing All Services
The Services module allows you to view all services managed by Mission Control in one place.

72 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Exploring+Sites#ExploringSites-Creatingasite

Type The service type. Artifactory or Xray.

Name The service name.

URL The service URL.

Status The service status.

Status Details The service status details.

Site The site the service is in.

License The service license type.

License valid Thru The service license expiration date.

Viewing an Artifactory Service
To view a single Artifactory service, click on the service name or hover over it from the Service module and select the view icon.

73 JFrog Mission Control Version 2.0 User Guide.pdf

1.
2.

The Artifactory service page is broken up into two parts:

The service details.
Artifactory specific information.

Storage Summary
The tab displays information about the number of binaries and the storage volume they occupy. For full details, please refer to Storage Summary Mon

 in the Artifactory documentation.itoring Storage

Replication
The tab displays information on all replications in which the selected Artifactory service is involved. If many replications are configured for Replication
the instance, you can filter the list by source or destination repository.

74 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Monitoring+Storage
https://www.jfrog.com/confluence/display/RTF/Monitoring+Storage

Type The replication type (push, multipush, pull).

Source The replication source.

Source Artifacts The replication source artifact count.

Destination The replication destination.

Destination Artifacts The replication destination artifact count.

Status The last replication status.

Last Run The previous replication run date.

Duration The last replication duration time.

Next Run The next scheduled replication run date.

Proxy The proxy through which MC accesses the Artifactory instance.

Run Now Invokes the selected replication immediately irrespective of cron expression specified for it.

License
The License tab provides information on the license with which the service is activated.

75 JFrog Mission Control Version 2.0 User Guide.pdf

Status The license status.

Artifactory identifier The Artifactory identifier.

License Hash A hash code of the license.

Licensed To The organization registered as owning the installed license

Valid Through The date at which the license's validity will lapse.

License Type Specifies if the license is or Pro Enterprise (HA)

HA
The tab provides information related to the HA configuration of the Artifactory service.HA

ID The unique Artifactory server name

Address The fully qualified URL of the Artifactory server

Heartbeat The last time the server signaled that it is up and running.

State The current state of the server.

Role The Artifactory node role.

For more details, please refer to in the .Managing the HA Cluster Artifactory User Guide

Task Summary
The tab displays information on all running tasks on the selected Artifactory instance. This information can be used for advanced Task Summary
analysis of events or issues that may occur in the selected instance.

76 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+the+HA+Cluster
https://www.jfrog.com/confluence/display/RTF/Welcome+to+Artifactory

1.

System Info
The System Info tab displays the full set of system properties and environment variables for the selected Artifactory service.

Viewing an Xray Service
To view a single Xray service, click on the service name or hover over it from the Service module and select the view icon.

The service page is broken up into two parts:

77 JFrog Mission Control Version 2.0 User Guide.pdf

1.
2.

The service details.
The Artifactory services that are connected to this Xray service.

Editing and Deleting a Service
Editing and deleting a service can be done from the Actions menu in the single service page, or by hovering over the service from the Services
module.

Troubleshooting

78 JFrog Mission Control Version 2.0 User Guide.pdf

This section describes the possible actions required for services that were added to Mission Control with errors.

Error Description Action Required

License invalid / duplicate /
expired

The license provided is either invalid, duplicated or has expired. Contact for an JFrog Sales at sales@jfrog.com
additional license.

Failed to upload extensions Update extensions by selecting "Upload Extensions" from the Actions menu in the .Single Service page

User is not an admin Only admin users can set up a connection to a service. Insert service admin credentials.

Failed to connect to the
service.

Verify the service information or the service credentials.

79 JFrog Mission Control Version 2.0 User Guide.pdf

mailto:sales@jfrog.com

1.
2.
3.
4.

Managing Licenses
Overview
The Mission Control sub-module manages activation, renewal and upgrade of all Artifactory Licenses
services under your control. There are two ways to manage Services' licenses:

Updating individual licenses manually
Managing multiple licenses automatically with License Buckets

Updating Licenses Individually
 You may update the license of several Artifactory services at a time by matching the service with its
corresponding license, and applying all the licenses in a single bulk operation. To enter or update an
Artifactory license, in the module, select The process is fully Admin Licenses | Update license.
described in below. Updating Licenses

Using License Buckets
Using license buckets, you can automate, and therefore greatly simplify, managing licenses for a large
number of Artifactory services. The process is fully described in below. License Bucket Management

Updating Licenses
The process of applying licenses has four steps:

Select Artifactory Services
Add Licenses
Match Licenses to Services
Apply Licenses

Page contents

Overview
Updating Licenses
Individually
Using License
Buckets

Updating Licenses
Select Artifactory
Services
Add Licenses
Match Licenses to
Services
Apply Licenses

License Bucket
Management

Initial Setup
Installing
JFrog CLI

Obtaining a
Bucket of Licenses
Adding a License
Bucket
Attaching and
Detaching
Licenses

Working
with
Artifactory
HA

Removing a
License Bucket
Bucket Report

Select Artifactory Services
Select the one or more service for which you want to add or update a license, and click "Continue" to move on to the next step

80 JFrog Mission Control Version 2.0 User Guide.pdf

Add Licenses
Enter the different licenses you want to apply to your Artifactory services.

Simply paste the licenses you want to add into the entry field and click "Add Licenses". Click "Continue" to move on to the next step.Add Licenses

Adding multiple licenses at once

You can add licenses one at a time, or paste several licenses, separated by an empty line, into the field and add them to the Add Licenses
list at once.

81 JFrog Mission Control Version 2.0 User Guide.pdf

Match Licenses to Services
In this step, you need to match up the Artifactory services you have selected with the licenses you have added.

First select an Artifactory service. This will enable the list of licenses.

Then, select the license you wish to apply to the selected service and click "Add".

The column on the right displays your matched selections.

To change services and licenses matches, click to return the service and license of a matched set to their respective lists.Delete

Once you have matched all of your Artifactory services with their licenses, click "Continue" to move on to the next step.

82 JFrog Mission Control Version 2.0 User Guide.pdf

Apply Licenses
The screen displays the Artifactory services that should be updated with the licenses you selected for them.Summary

Wrong screenshot

83 JFrog Mission Control Version 2.0 User Guide.pdf

To apply the licenses click "Execute All".

License Bucket Management
 uses JFrog Mission Control License Bucket Management which automates, and therefore, greatly simplifies the management of licenses for large

numbers of Artifactory services.

JFrog Mission Control offers a convenient way to attach licenses to Artifactory services it manages through the Admin module under Licenses |
Update License. This works well when managing several services of Artifactory, but may become more challenging as enterprises grow and start
managing larger numbers of Artifactory services.

Initial Setup
To use JFrog Mission Control license bucket management, you first need to set up the following components on your system:

JFrog Command Line Interface (CLI)

Installing JFrog CLI

JFrog CLI is a compact and smart client that provides a simple interface to JFrog Mission Control (through its REST API). JFrog CLI can be used by
your automation environment for fully automated license management for all your Artifactory services through Mission Control. For details on
downloading and installing JFrog CLI, please refer to the documentation.JFrog CLI

Obtaining a Bucket of Licenses

You can retry, but you cannot roll back.

If, for any reason, applying a license does not work in any of the Artifactory services, you can click the corresponding "Retry" button to try
again.

However, once a licenses is applied, you cannot roll back to the previous licenses.

Getting a License Bucket

Contact JFrog Sales at for additional information on how you can get your License Bucket.sales@jfrog.com

84 JFrog Mission Control Version 2.0 User Guide.pdf

mailto:sales@jfrog.com

To obtain your bucket of licenses, please contact your JFrog representative who will create a bucket with the number of licenses you require and send
them to you. All licenses in a bucket have exactly the same activation parameters. That means they will all be enterprise or trial licenses with the
same date of expiry.

 You will receive your license bucket through two email messages. The first message includes a signed URL that points to the archive containing the
bucket of licenses. You should look out for a section similar to the below:

...

Here are the identifier and signed URL for this license bucket:

Bucket identifier: <bucket_id>

Signed URL: <signed_URL>

…
The second message includes a decryption key for the license bucket. You should look out for a section similar to the below:

…

Here are the identifier and Key for this license bucket:

Bucket identifier: <bucket_id>

Key: <key>

…
You need to enter the Bucket Identifier, Signed URL and Key in JFrog Mission Control as described in the next section.

Adding a License Bucket
You can view all loaded license buckets in the Admin module under .Licenses | Bucket Management

To load a new bucket, click .Add New Bucket

You can give the bucket a logical name in the Name field. Enter the signed URL and Key you received from your JFrog representative and click Get
Bucket.

85 JFrog Mission Control Version 2.0 User Guide.pdf

Once the license bucket has been loaded into JFrog Mission Control, you can attach licenses from it using JFrog CLI.

Attaching and Detaching Licenses
While each Artifactory license can only activate one Artifactory service at a time, you are free to move any license around to different Artifactory
services as long as the license remains valid. For example, you can temporarily attach a license from a bucket to an Artifactory service used for a
specific development project. Once the project is complete and the Artifactory service is no longer needed, you can detach the license and return it to
the bucket managed by Mission Control.

You can attach and detach licenses with the JFrog CLI.

The attach-lic command extracts a license from the bucket specified and attaches it to the specified Artifactory service.

The detach-lic command removes the specified license from the specified Artifactory service and returns it to the specified bucket in JFrog Mission
Control

For details on using the JFrog CLI to attach and detach licenses, please refer to to the documentationJFrog CLI .

Working with Artifactory HA

From version 5.0 of JFrog Artifactory, licensing for all cluster nodes in an Artifactory High Availability configuration are managed through the Cluster
. When attaching or detaching licenses to an HA cluster, Mission Control will detect the Artifactory version and work accordingly with License Manager

the Cluster License Manager if the version is 5.0 or above, or directly with each node for earlier versions of Artifactory.

Match the bucket identifier to the URL and key

If you have received more than one license bucket, make sure you enter a URL and Key that correspond to the same Bucket Identifier.

Bucket name and identifier are two different things

Don’t confuse the bucket Name with the Bucket Identifier. The bucket name is an arbitrary logical name you assign to the bucket. The
identifier is a unique identifier assigned to the bucket by JFrog.

A license always belongs to the same bucket

When you detach a license, it is always returned to the same bucket it was attached from.

86 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/JFrog+CLI#JFrogCLI-AttachingaLicense
https://www.jfrog.com/confluence/display/MC2X/JFrog+CLI#JFrogCLI-DetachingaLicense
https://www.jfrog.com/confluence/display/MC2X/JFrog+CLI#JFrogCLI-AttachingaLicense
https://www.jfrog.com/confluence/display/MC2X/JFrog+CLI#JFrogCLI-DetachingaLicense
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement

Removing a License Bucket
You can view all loaded license buckets in the Admin module under .Licenses | Bucket Management

To remove a bucket, hover over it and select delete. Removing the bucket will not remove the licenses from the services.

Once the license bucket is removed, the services that were attached to it should be assigned to a new bucket.

Bucket Report
A bucket report provides a variety of information on usage of licenses in the bucket. To view a bucket report, click the in the list of license Bucket ID
buckets.

To detach a license key, right click on it and select "Detach".

Bucket identifier The identifier of this bucket

Max. consumed licenses The maximum number of licenses that were ever in use concurrently during the validity period of this bucket

Current licenses in use The number of licenses currently in use

Current available licenses The number of licenses currently available

87 JFrog Mission Control Version 2.0 User Guide.pdf

Total licenses The total number of licenses in this bucket

Do you have enough or too many licenses in your bucket?

The value of shows you that highest number licenses you ever used during the validity period of this bucket. Max. Consumed Licenses
This is something to consider when you renew your JFrog Artifactory licenses. If you never used all the licenses in this bucket concurrently,
you may be able to manage with fewer licenses. If you did reach the total number of licenses in this bucket, you may not be meeting the
demand for Artifactory services in your organization and should consider purchasing more Artifactory licenses.

88 JFrog Mission Control Version 2.0 User Guide.pdf

Notifications
Overview
Mission Control can issue email notifications for different events that occur. Notifications are generated
by defining that specify thresholds for values that will trigger the email to be sent. Policies

Currently, events related to how instances and repositories use storage are supported as described in
the following sections.

Page contents

Overview
Notifications Panel
Creating and Editing
Policies

Percent of
available storage
per instance
Repository
Storage Capacity
Policies

Notifications Panel
The Notifications Panel is available in the module under and displays all the policies you have defined.Admin Notifications Group | Notifications

On/Off Enables/disables the policy

Policy Name A unique name for the policy

Type There are two types of policy:

Percent of available storage per instance
Repository storage capacity

Alert When Specifies the threshold of the policy

Repo/Artifactory The Artifactory instance or set of repositories on which the policy is applied

Emails The email address to which notifications will be sent

Creating and Editing Policies

Configure an email server

To allow Mission Control to send out notifications, make sure you configure an Email server

89 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuring+Mission+Control#ConfiguringMissionControl-MailServer

To create a new policy, click the "Create Policy" button, or select an existing policy from the list to edit it.

Percent of available storage per instance

You can configure an instance policy to send notifications when an instance's percentage of available storage goes above or below the set
.threshold

To create an instance policy, select in the field.percentage of available storage per instance Policy Type

Name A logical name for the policy.

Policy Type Specifies the policy type - Percent of available storage per instance or Repository storage capacity.

Select Instances Select the instances to which the policy should apply.

Add Emails Add email addresses to which notifications should be sent by entering them in this field and clicking the plus sign.

Select Policy Specify the threshold. Select the comparator (<, <=, >, >=) and the value for the policy.

Repository Storage Capacity Policies
You can configure a repository storage capacity policy to send notifications when a repository's usage of storage goes above or below the set

.threshold

Select in the field.Repository Storage Capacity Policy Type

Not available when using cloud a storage provider

You cannot define a policy based on percentage of available storage per instance if you are using a cloud storage provider (e.g. S3, GCP,
Microsoft Azure or others)

90 JFrog Mission Control Version 2.0 User Guide.pdf

Name A logical name for the policy.

Policy Type Specifies the policy type - Percent of available storage per instance or Repository storage capacity.

Select Repositories Select the repositories to which the policy should apply.

Add Emails Add email addresses to which notifications should be sent by entering them in this field and clicking the plus sign.

Select Policy Specify the threshold. Select the comparator (<, <=, >, >=), the value and the units (MB, GB) for the policy.

91 JFrog Mission Control Version 2.0 User Guide.pdf

Graphs
Overview
Mission Control stores historical data about Artifactory services and their repositories, and displays a
variety of graphs showing different parameters related to storage and usage of Artifacts in Artifactory
services that are managed by Mission Control.

Storing Graph Data
Data for the Graphs module is stored using an database. Mission control runs a service wElasticsearch ,
hich collects, stores and manages the historical data in Elasticsearch, and is fully controlled by Mission
Control. You should be aware Elasticsearch service is running in the background, however, there should
be no need to interact with it directly since it is fully managed by Mission Control.

For full details on using the ElasticSearch database with JFrog Mission Control, please refer to the Elastic
.search Usage Guide

Page contents

Overview
Storing Graph Data
Usage Graphs

Storage / Artifact
Usage

Focusing
on
Artifactory
Services
and
Repositori
es

Top 5
Repositories
(Max. per Week)
Top 5 Services
(Max. per Week)

Usage Graphs
The following graphs are currently available:

Storage / Artifact Usage - shows the amount of storage and number of artifacts used by any or all of the services managed by Mission
Control
Top 5 Repositories (Max. per Week) - shows the five repositories whose maximum usage of storage has been highest on a weekly basis for
the selected service
Top 5 Services (Max. per Week) - shows the five services whose maximum usage of storage has been highest on a weekly basis

You can view these graphs in the module by selecting the corresponding tab.Graphs

Storage / Artifact Usage
This graph displays the amount of storage used, and the number of artifacts, in the services and repositories selected in the corresponding lists. There
are three available filters: , , and .services repositories time period

Use the navigation bar to zoom in and navigate within the timeline. The blank spaces in the graph demonstrate no data collected, where the
Artifactory services were unavailable.

Migrating Data from JFMC 1.x to 2.x

From version 2.0, Mission Control data is stored in Elasticsearch. If you still want your
historical data to be accessible, you need to migrate your data from the previously used

 as described on this page. However, if you are not interested in your historical data, InfluxDB
there is no need to migrate your data. Mission Control will continue to collect data from the
installation of version 2.0.

Data and services list

After a service is configured in Mission Control, data is captured every 15 minutes of the hour. The graphs will show "No data available yet".
The services list will also be empty and will be populated when the first 15 minute interval of data collection window occurs.

92 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.elastic.co/

Focusing on Artifactory Services and Repositories

By default, this graph displays readings that are accumulated for all Artifactory services managed by Mission Control, and all their respective
repositories. You can, however, focus on any specific service or repository by making the appropriate selection in the corresponding lists, and filter it
by the time period as needed.

Top 5 Repositories (Max. per Week)
This graph displays the 5 repositories (in all managed Artifactory services) whose maximal storage used over the selected week is greatest. If any
repository appears in more than one time period, it is displayed using the same color which makes it convenient to compare that repository's maximal
storage used week over week. Selecting any bar or hovering over it displays additional details, including the Artifactory service and repository name.

By default, this graph displays readings that are accumulated for all services managed by Mission Control, for the current week. You can, however,
focus on any specific service by making the appropriate selection in the drop-list provided, and slide the navigation bar to focus on the needed time
period.

Re-adding services with same name

If a service is deleted, the historical data for the deleted service is not deleted. If a service with the same name is added, the deleted
service will be renamed as for the first time and the second time and so on. The services <service_name>_old_1 <service_name>_old_2
drop down will show the deleted ones to help with historical debugging.

93 JFrog Mission Control Version 2.0 User Guide.pdf

Top 5 Services (Max. per Week)
This graph shows the five Artifactory services whose artifacts storage size over the selected week is greatest. Slide the navigation bar to the time
period and hover over the bars to view details.

94 JFrog Mission Control Version 2.0 User Guide.pdf

JMX MBeans
Overview
JFrog Mission Control complies with the for MBeans allowing you to monitor a variety JMX specification
of different parameters of Mission Control using any JMX agent. These include:

Connected Artifactory instances with data on the storage they consume
Repositories within the connected instances and the storage they consume
Replication status for each repository

The rest of this section describes how to set up and use to monitor Mission Control, however, JConsole
any JMX agent should also work.

Connecting JConsole
You can use any JMX compliant agent to connect to the Mission Control MBeans implementation. This section shows how to connect JConsole which
should be included in your JDK installation under your directory.$JAVA_HOME/bin

To start up JConsole, enter on your command linejconsole
Scroll the window until you find the process and click "Connect"Local Process MissionControlApplication

Select the tab to display the MBeans hierarchyMBeans

Mission Control MBeans
Mission Control MBeans are implemented in the following hierarchy

org.jfrog.mc.artifactory - the root node
| |-Artifactory -Root of all Artifactory instances
| | |-<Instances> - Node representing each instance
| | | |-<Repositories> - Node representing each repository in the parent instance

The screenshot below shows details for an Artifactory instance called "Master" and one of its repositories called "ext-release-local"

Prerequisites

To get started, make sure that:

Your JAVA_HOME environment variable is correctly configured
$JAVA_HOME/bin is registered in your operating system's "path" variable
Mission Control is configured with one or more Artifactory instances

Page Contents

Overview
Connecting JConsole
Mission Control MBeans

95 JFrog Mission Control Version 2.0 User Guide.pdf

http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html

The following table describes the different MBeans implemented for Mission Control and the corresponding attributes you can monitor.

MBean Attributes

Instance storage
Free space
Used space
Total space

Instance status
Started up
Went down

Repository storage
File count
Used space

Replication status
Last completed replication date/time
Replication status

96 JFrog Mission Control Version 2.0 User Guide.pdf

System Monitoring
Overview
Mission Control provides different facilities that allow you to maintain and monitor your system.

Page contents

Overview
System Status

System Status
Mission Control displays your general system status as an icon on the ribbon. The green check mark indicates that there are there are no issues.

Failed service messages are displayed in the System Status with a red exclamation mark and a short description of the encountered problem.

The following table displays a sample list of failed service messages:

Service Problem Severity Potential Action

core_servi
ce

MongoDB URL not configured in
settings.

ERROR Check if the Docker compose file, (Docker installations), or setenv.sh (non-Docker installations),
has the appropriate user and password set for Mongo variables for the core and Mongo service,
and update as necessary.

core_servi
ce

Environment variable
JFI_HOME_CORE is not set.
Default value is used.

WARNING No action is required. If the default values are not working consider updating this environment
variable in Docker Compose or in setenv.sh.

core_servi
ce

Settings could not be retrieved or
is empty.

ERROR Check if the Mongo service is running. If not, consider starting it.

executor_
service

Executor status check failed. ERROR
The Executor service is not able to communicate with the core service.
Check if the Docker network set up allows communication between them
Executor service is not able to communicate with Elastic search service
Check if the Docker network set up allows communication between them.

scheduler
_service

Scheduler is not active. ERROR Scheduler cannot connect with Postgress. Check the user password set in the Docker Compose file
or in setenv.sh.

97 JFrog Mission Control Version 2.0 User Guide.pdf

Mission Control REST API
Overview
Mission Control exposes a rich REST API to allow fully automated management of Artifactory and Xray
services under your control.

This provides a convenient and up-to-date self-descriptive API and can be used by various tools to
automate the creation of REST calls.

Version
Mission Control REST API is currently in Version 3 and is a major upgrade which includes significant
changes from the previous version.

If you are still using Version 2 of the REST API, please refer to , however Mission Control REST API v2
note that this has been deprecated.

We strongly recommend that you upgrade your scripts to the latest API version, and to facilitate the
required modifications, please refer to below. Version Mapping

Usage
Mission Control REST API can be invoked in any of the standard ways for a REST API. The following
section describes how to use the Mission Control REST API using cURL as an example.

Using and configuring cURL
You can download cURL here. Learn how to use and configure cURL here.

Example - Create Site
The example below demonstrates how to invoke the create user REST API.

You have MissionControl running on your local system, on port 8080
You wish to create a site called "us-west" containing both an Artifactory and Xray service
You created a file with the site's parameters called createsite.json

To use the file to create a new user, you would use the following command:

Using cURL with the REST API

$ curl 'http://localhost:8080/api/v3/sites' -i -u 'admin:password' -X POST
-H 'Content-Type: application/json; charset=UTF-8' -T createsite.json

The file createsite.json will contain the following :

{
 "name": "us-west",
 "description": "US West coast site",
 "city": {
 "name": "Sunnyvale",
 "country_code": "US",
 "latitude": 37.368830,
 "longitude": -122.036350
 },
 "services": ["arti-west", "xray-west"]
}

Page Contents

Overview
Version
Usage

Using
and
configurin
g cURL

Example - Create
Site

SYSTEM
System Health
Check

SITES
Create Site
Update Site
Partial Update
Site By Name
Get Site
Get Site List
Delete Site

SERVICES
Create Service
Update Service
Get Service List
Delete Service
Get Repository List

MONITORING
Get Services
Status
Get Service Status

DISASTER RECOVERY
Create DR Pair

SCRIPTS
Get Scripts
Get Script User
Input
Execute Script

LICENSE BUCKETS
Get Bucket Status
Attach License
Attach License
Artifactory 5.x HA

AUTHENTICATION
Change Password

Version Mappings

Read More

Working with User Input
Mission Control REST API
v2
Mission Control REST API
v1

Authentication

All Mission Control REST API endpoints require basic authentication using your username
and password except for the .System Health Check

98 JFrog Mission Control Version 2.0 User Guide.pdf

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

SYSTEM

System Health Check
Description: Get an indication if Mission Control is running or not

 2.0Since:
 GET /api/v3/pingUsage:

Example:

GET /api/v3/ping

true

SITES
These are the relevant fields when configuring sites:

Field Type Optional Description

name String false Site's name

description String true Site's description

city Object false Site's city

city.name String true City's name

city.country_code String true City's country code

city.longitude Number false City's longitude

city.latitude Number false City's latitude

services Array true Names of services

Create Site
Description: Create a new site.

Since: 2.0
Security: Requires an admin user
Usage: POST /api/v3/sites
Return codes:
201 - No Content
400 - Couldn't find service(s) with following name(s):, '<Service name>', '<Service name>'

409 - Site name>Name '< ' already exists.
Consumes: application/json

{
 "name" : "<Site name>",
 "description" : "<Site description>",
 "city" : {
 "name" : "<City name>",
 "country_code" : "<Country code>",
 "latitude" : <City lat coordinate>,
 "longitude" : <City lon coordinate>
 },
 "services" : ["<Service name>"]
}

Example:
In this example, a new Sunnyvale site is created and services "arti-west" and "xray-west" are associated with the new site. If the services exist, 201

 will be returned. Created

$ curl 'http://localhost:8080/api/v3/sites' -i -u 'admin:password' -X POST -H 'Content-Type: application
/json; charset=UTF-8' -T createsite.json

99 JFrog Mission Control Version 2.0 User Guide.pdf

http://city.name

createsite.json

{
 "name": "us-west",
 "description": "US West coast site",
 "city": {
 "name": "Sunnyvale",
 "country_code": "US",
 "latitude": 37.368830,
 "longitude": -122.036350
 },
 "services": ["arti-west", "xray-west"]
}

Update Site
Description: Updates an exiting site by name.
Since: since 2.0

: Requires an admin userSecurity
: PUT /api/v3/sites/{name}Usage

Return codes:
204 - No Content
409 - The entity 'Site' with identifier '<Site-name>' was not found
Consumes: application/json

{
 "name" : "<Updated site name>",
 "description" : "<Updated site description>",
 "city" : {
 "name" : "<Updated city name>",
 "country_code" : "<Updated country code>",
 "latitude" : <Updated city lat coordinate>,
 "longitude" : <Updated city lon coordinate>
 },
 "services" : [{
 "name" : "<Service name>",
 "type" : "<ARTIFACTORY | XRAY>"
 }]
}

Example :

In this example, an existing site named Argentina is being updated to Mexico Data Center with appropriate attributes. If the site 'Argentina' exists, 204
 will be returnedNo Content

$ curl -XPUT 'http://localhost:8080/api/v3/sites/Argentina' -i -u 'admin:password' -H 'Content-Type:
application/json; charset=UTF-8' -T updatesite.json

100 JFrog Mission Control Version 2.0 User Guide.pdf

updatesite.json

{
 "name" : "Mexico Data Center",
 "description" : "Updated site description",
 "city" : {
 "name" : "Mexico City",
 "country_code" : "MX",
 "latitude" : 19.428470,
 "longitude" : -99.127660
 }
}

Partial Update Site By Name
Description: Updates a site .without updating the attributes

2.1Since:

Security: Requires an admin user
Usage: PUT /api/v3/services/{name}
Return codes:
204 - No Content
Consumes: application/json

PATCH /api/v3/sites/{name}

Example:

PATCH /api/v3/sites/Site%20name HTTP/1.1
Content-Type: application/json; charset=UTF-8
Host: localhost:8080
Content-Length: 119

{
 "name" : "Updated site name",
 "description" : "Updated site description",
 "services" : ["Artifactory name"]
}

 HTTP/1.1 204 No Content

Example:

$ curl 'http://localhost:8080/api/v3/sites/Site%20name' -i -u 'admin:password' -X
PATCH -H 'Content-Type: application/json; charset=UTF-8' -d '{
 "name" : "Updated site name",
 "description" : "Updated site description",
 "services" : ["Artifactory name"]
}'

Get Site
Description: Gets a site by name

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/sites/{name}
Return codes:

101 JFrog Mission Control Version 2.0 User Guide.pdf

200 - Success
409 - The entity 'Site' with identifier '{name}' was not found"
Produces: application/json

{
 "name" : "<Site name>",
 "description" : "<Site description>",
 "city" : {
 "name" : "<City name>",
 "country_code" : "CODE",
 "latitude" : <City lat coordinate>,
 "longitude" : <City lon coordinate>
 },
 "services" : [{

 "name" : "<Service name>",
 "type" : "<ARTIFACTORY | XRAY>"
 }]
}

Example:

In this example, information regarding Site named 'China' is being retrieved. If site 'China' exists will be returned 200 Success

$ curl -XGET 'http://localhost:8080/api/v3/sites/China' -uadmin:password

example output

{
 "name": "Beijing",
 "description": "Beijing Data Center",
 "city": {
 "name": "Beijing",
 "country_code": "CN",
 "latitude": 39.907500,
 "longitude": 116.397230
 },
 "services": [
 {
 "name": "arti-beijing",
 "type": "ARTIFACTORY"
 }
]
}
200 Success

Get Site List
Description: Gets a list of all sites

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/sites/
Return codes:
200 - Success
409 - The entity 'Site' with identifier '<Site-name>' was not found
Produces: application/json

102 JFrog Mission Control Version 2.0 User Guide.pdf

[{
 "name" : "<Site name>",
 "description" : "<Site description>",
 "city" : {
 "name" : "<City name>",
 "country_code" : "CODE",
 "latitude" : <City lat coordinate>,
 "longitude" : <City lon coordinate>
 },
 "services" : [{

 "name" : "<Service name>",
 "type" : "<ARTIFACTORY | XRAY>"
 }]
}]

Example:

$ curl -XGET 'http://localhost:8080/api/v3/sites' -uadmin:password

example output

[
 {
 "name": "China",
 "description": "",
 "city": {
 "name": "Shanghai",
 "country_code": "CN",
 "latitude": 31.22222,
 "longitude": 121.45806
 },
 "services": [
 {
 "name": "China",
 "type": "ARTIFACTORY"
 }
]
 },
 {
 "name": "Argentina",
 "description": "",
 "city": {
 "name": "Buenos Aires",
 "country_code": "AR",
 "latitude": -34.61315,
 "longitude": -58.37723
 },
 "services": [
 {
 "name": "Source Local",
 "type": "ARTIFACTORY"
 }
]
 }
]

200 Success

103 JFrog Mission Control Version 2.0 User Guide.pdf

Delete Site
Description: Delete a site

Since: 2.0
Security: Requires an admin user
Usage: DELETE /api/v3/sites/{name}
Return codes:
200 - Success
409 - Cannot delete site {name}, it has non-empty service(s): {name of the service}

Example:

$ curl -XDELETE 'http://localhost:8080/api/v3/sites/China' -uadmin:password -H "Content-Type: application
/json"

SERVICES
Create Service
Description: Creates a new service.

Since: 2.0
Security: Requires an admin user
Usage: POST /api/v3/services
Return codes:
201 - Created
409 - Failed to connect to the service. Please verify that the service information provided is correct
Consumes: application/json

{
 "name" : "<Service name>",
 "description" : "<Service description>",
 "url" : "<Service URL>",
 "username" : "<Service admin username>",
 "password" : "<Service admin password>",
 "type" : "<ARTIFACTORY | XRAY>"
}

Example:

$ curl 'http://localhost:8080/api/v3/services' -i -u 'admin:password' -X POST -H 'Content-Type: application
/json; charset=UTF-8' -T createservice.json

createservice.json

{
 "name" : "dev-west",
 "description" : "Artifactory serving development in West region",
 "url" : "https://artifactory-west.acme.com/artifactory",
 "username" : "admin",
 "password" : "password",
 "type" : "ARTIFACTORY"
}

201 Created

104 JFrog Mission Control Version 2.0 User Guide.pdf

Update Service
Description: Updates a service

Since: 2.0
Security: Requires an admin user
Usage: PUT /api/v3/services/{name}
Return codes:
204 - No Content
409 - Url <Service-url> already exists
Consumes: application/json

{
 "name" : "<Service name>",
 "description" : "<Service description>",
 "url" : "<Service URL>",
 "username" : "<Service admin username>",
 "password" : "<Service admin password>"
}

 Example:

$ curl 'http://localhost:8080/api/v3/services/dev-west' -i -u 'admin:password' -X PUT -H 'Content-Type:
application/json; charset=UTF-8' -T updateservice.json

updateservice.json

{
 "name" : "dev-east",
 "description" : "Artifactory serving development in East region",
 "url" : "https://artifactory-east.acme.com/artifactory",
 "username" : "admin",
 "password" : "password"
}

204 No Content

Get Service List
Description: Get a list of all services

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/services/
Produces: application/json
Example:

$ curl -XGET 'http://localhost:8080/api/v3/services' -uadmin:password

105 JFrog Mission Control Version 2.0 User Guide.pdf

example output

[
 {
 "name": "Argentina",
 "description" : "Artifactory serving development in Argentina",
 "url": "http://10.0.0.8:8082/artifactory",
 "type": "ARTIFACTORY"
 },
 {
 "name": "China",
 "description" : "Artifactory serving development in China",
 "url": "http://10.0.0.8:8081/artifactory",
 "type": "ARTIFACTORY"
 }
]

200 Success

Delete Service
Description: Deletes a service

Since: 2.0
Security: Requires an admin user
Usage: DELETE /api/v3/ /{name}services
Return codes:
200 - Success

Example:

$ curl -XDELETE 'http://localhost:8080/api/v3/services/Argentina' -uadmin:password -H "Content-Type:
application/json"

Get Repository List
Description: Gets the list of repositories in the specified Artifactory service
Since: 2.0
Security: Requires an admin user
Usage: GET api/v3/services/artifactory/{name}/repositories

Return codes:
200 - Success

409 - Could not find Artifactory instance with name <Service-name>
Consumes: application/json
Example:

$ curl -XGET 'http://localhost:8080/api/v3/services/artifactory/{name}/repositories' -uadmin:password

106 JFrog Mission Control Version 2.0 User Guide.pdf

example output

[
 {
 "repository_key": "bower-local",
 "description": "",
 "type": "local",
 "package_type": "bower"
 },
 {
 "repository_key": "generic-local",
 "description": "",
 "type": "local",
 "package_type": "generic"
 },
 {
 "repository_key": "libs-release-local",
 "description": "",
 "type": "local",
 "package_type": "maven"
 },

...

 {
 "repository_key": "npm",
 "description": "",
 "type": "virtual",
 "package_type": "npm"
 }
]

MONITORING
Get Services Status
Description: Get status of all services

: 2.0Since
: GET /api/v3/services/monitoring/statusUsage

Return codes:
200 - Success
Produces: application/json

[
 {
 "service_name": "<Service name>",
 "up_time_in_sec": <Time in seconds that the service has been up>,
 "service_state": "< ONLINE | OFFLINE >"
 }
]

Example:

$ curl -XGET 'http://localhost:8080/api/v3/services/monitoring/status' -uadmin:password

107 JFrog Mission Control Version 2.0 User Guide.pdf

example output

[
 {
 "service_name": "China",
 "up_time_in_sec": 29282,
 "service_state": "ONLINE"
 },
 {
 "service_name": "Argentina",
 "up_time_in_sec": 131,
 "service_state": "ONLINE"
 }
]

200 Success

Get Service Status
Description: Get status of the specified service
Since: 2.0
Usage: GET /api/v3/services/{name}/monitoring/status
Return codes:
200 - Success
409 - Could not find service with name <Service-name>
Produces: application/json

{
 "service_name": "<Service name>",
 "up_time_in_sec": <Time in seconds that the service has been up>,
 "service_state": "< ONLINE | OFFLINE >"
}

Example:

$ curl -XGET 'http://localhost:8080/api/v3/services/China/monitoring/status' -uadmin:password

example output

{
 "service_name": "China",
 "up_time_in_sec": 46182,
 "service_state": "ONLINE"
}
200 Success

DISASTER RECOVERY

Create DR Pair
Description: Matches up a Master and Target Artifactory service as a DR pair.
Since: 2.0
Security: Requires an admin user
Usage: POST /api/v3/dr-configs

108 JFrog Mission Control Version 2.0 User Guide.pdf

Consumes: application/json

{
 "source" : "<Source artifactory instance>",
 "target" : "<Target artifactory instance>"
}

Produces: application/json

{
 "active": "NONE",
 "dr_replications_enabled": <true | false>,
 "state": "NONE"
}

Example:

$ curl -X POST 'http://localhost:8080/api/v3/dr-configs' -i -u 'admin:password' -H 'Content-Type:
application/json; charset=UTF-8' -T createdr.json

createdr.json

{
 "source" : "Mexico",
 "target" : "China"
}

Example return:

Example return

{
 "active": "NONE",
 "dr_replications_enabled": false,
 "state": "NONE"
}

SCRIPTS
Get Scripts
Description: Get a list of all scripts

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/scripts

Return codes:
200 - Success
Produces: application/json

109 JFrog Mission Control Version 2.0 User Guide.pdf

[
 { "name" : "<script name>" }
]

Example:

$ curl -XGET 'http://localhost:8080/api/v3/scripts' -uadmin:password

[
 {
 "name": "Create_repository"
 },
 {
 "name": "Delete_repository"
 },
 {
 "name": "ldap"
 },
 {
 "name": "Create_service"
 }
]

200 Success

Get Script User Input
Description: Get a list of required script user inputs

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/scripts/{name}/user_inputs
Return codes:
200 - Success
404 - The entity 'Script' with identifier '<Script-name>' was not found
Produces: application/json
Example:

$ curl -XGET 'http://localhost:8080/api/v3/scripts/{name}/user_inputs' -uadmin:password

example output

{
 "ArtifactoryDsl#0#LocalRepositoryDsl#0#description#0": {
 "name": "Enter the required user input value here",
 "description": "Please provide a description",
 "value": "This is a generic description",
 "type": "STRING",
 "multivalued": false
 }
}

110 JFrog Mission Control Version 2.0 User Guide.pdf

Execute Script
Description: Executes the specified scripts on the specified service

Since: 2.0
Security: Requires an admin user
Usage: PUT /api/v3/execute_script/{name}
Return codes:
200 - Success
404 - Errors based on the input provided.
Consumes: application/json (only when user input is required by the script)
When the script requires user input, this is the JSON object describing it as returned by endpoint. Get Script User Input
Produces: application/json

[
 {
 "instance":{
 "name":"<instance name>",
 "url":"<instance URL>",
 "type":"<instance type>"
 },
 "status":"< OK | ERROR >",
 "execution_duration":<Duration in seconds>
 }
]

In case of error, output is:

[
 {
 "instance":{
 "name":"<instance name>",
 "url":"<instance URL>",
 "type":"<instance type>"
 },
 "status":"ERROR",
 error: {
 "type": "<Error type>",
 "message" : "<Error message>",
 "details" : ["<Additional details>"],
 },
 "execution_duration":<Duration in seconds>
 }
]

Example:

$ curl -uadmin:password -XPUT http://localhost:8080/api/v3/execute_script/{Script_Name} -d '{}' -H 'Content-
Type: application/json'

111 JFrog Mission Control Version 2.0 User Guide.pdf

example output

[
 {
 "instance":{
 "name":"Mexico",
 "url":"http://172.31.61.159:8081/artifactory",
 "type":"ARTIFACTORY"
 },
 "status":"OK",
 "execution_duration":1622,
 "operation":"UPDATE_REPOSITORY"
 }
]

LICENSE BUCKETS
Get Bucket Status
Description: Get the report for a specified bucket.

Since: 2.0
Security: Requires an admin user
Usage: GET /api/v3/buckets/{identifier}/report
Produces: application/json

{
 "id": "<bucket ID>",
 "size": <Number of licenses in the bucket>,
 "licenses": {
 "used": <Number of licenses that are in use>,
 "available": <Number of licenses that are in available>,
 "max_used": <The maximum number of licenses ever used concurrently>
 }
}

Return codes:
200 - Success

 Example:

$ curl -XGET 'http://localhost:8080/api/v3/buckets/415921223/report' -i -u 'admin:password'

example output

{
 "id": "2435",
 "size": 5,
 "licenses": {
 "used": 0,
 "available": 5,
 "max_used": 0
 }
}

200 Success

112 JFrog Mission Control Version 2.0 User Guide.pdf

Attach License
Description: Attaches a license from the specified bucket to the specified Artifactory service.

Since: 2.0
Security: Requires an admin user
Usage: POST /api/v3/attach_lic/buckets/{name}
Consumes: application/json

{
 "node_id" : "<nodeId of the cluster node to receive the license>",
 "service_name" : "Artifactory service name",
 "deploy" : <true | false>
}

Produces: application/json

{
 "license_key" : "<license-key>"
}

Return codes:

200 - Success

 Example:

$ curl -POST 'http://localhost:8080/api/v3/attach_lic/buckets/{name}' -i -u 'admin:password' -H 'Content-
Type: application/json; charset=UTF-8' -T attachlicense.json

attachlicense.json

{
 "node_id" : "nodeId",
 "service_name" : "ServiceName",
 "deploy" : false
}

example output

{
 "license_key" : "<cHJvZHV...jdHM6CiAgY>"
}

Attach License Artifactory 5.x HA
Description: Attaches a number of licenses from the specified bucket to an Artifactory 5.x HA cluster.

Since: 2.0
Security: Requires an admin user
Usage: POST /api/v3/attach_lic/buckets/{name}
Consumes: application/json

113 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "number_of_licenses" : 5,
 "service_name" : "<Service name>",
 "deploy" : < false | true >
}

Return codes:

200 - Success

409 - "Deployment of multiple license is supported for cluster only"

 Example:

$ curl 'http://localhost:8080/api/v3/attach_lic/buckets/{name}' -i -u 'admin:password' -X POST -H 'Content-
Type: application/json; charset=UTF-8' -T attachlicense.json

attachlicense.json

{
 "number_of_licenses" : 5,
 "service_name" : "ServiceName",
 "deploy" : false
}

AUTHENTICATION

Change Password

Description: Changes a user's password.
2.1Since:

Security: Users can change their own password. Requires an admin user to change all user passwords.
Usage: PUT /api/v3/auth/changePassword
Return codes:
204 - No Content
Consumes: application/json

PUT /api/v3/auth/changePassword HTTP/1.1
Authorization: Basic YWRtaW46cGFzc3dvcmQ=
Content-Type: application/json; charset=UTF-8
Host: localhost:8080
Content-Length: 56

{
"username" : "username",
"password" : "pa$1word"
}

Version Mappings
To facilitate updating your scripts to use the latest API, the following table presents a mapping between endpoints in V1 and the corresponding
endpoints in V2 of the REST API.

Category Description Method V1 Endpoint V2 Endpoint V3 Endpoint

Services Get list of Artifactory services GET /api/v1/instances /api/v2/instances N/A

114 JFrog Mission Control Version 2.0 User Guide.pdf

Add service POST /api/v1/instances /api/v2/instances /api/v3/services

Update service PUT Not available /api/v2/instances/{name} /api/v3/services/{name}

Get repositories for service GET /api/v1/instances/{name}
/repositories

/api/v2/instances/{name}
/repositories

/api/v3/services/artifactory/{name}
/repositories

Delete by nameservice DELETE /api/v1/instances/{name} /api/v2/instances/{name} /api/v3/services/{name}

Get all services GET /api/v3/services/

Authentication Update password PUT N/A N/A /api/v3/auth/changePassword

Security Create user POST api/v1/users /api/v2/security/users N/A

Update user PUT /api/v1/users/{name} /api/v2/security/users/{name} N/A

Create user group POST /api/v1/userGroups /api/v2/security/user_groups N/A

Update user group PUT /api/v1/userGroups/{name} /api/v2/security/user_groups/
{name}

N/A

Create permission target POST /api/v1/permissionTargets /api/v2/security
/permission_targets

N/A

Update permission target by name PUT /api/v1/permissionTargets/
{name}

/api/v2/security
/permission_targets/{name}

N/A

License
Buckets

Get bucket status GET /api/v1/buckets/{id}/status /api/v2/buckets/{id}/report /api/v3/buckets/{identifier}/report

Attach a license POST /api/v1/buckets/{id}
/licenses

/api/v2/attach_lic/buckets/{id} /api/v3/attach_lic/buckets/{name}

Detach a license DELETE /api/v1/buckets/{id}
/licenses

/api/v2/detach_lic/buckets/{id} /api/v3/attach_lic/buckets/{name}

Attach a license to Artifactory v5.
5 and above

POST /api/v3/attach_lic/buckets/{name}

Execute
Scripts

Create repository POST /api/v1/repositories /api/v2/execute_scripts
/repositories

N/A

Update repository PUT /api/v1/repositories /api/v2/execute_scripts
/repositories

N/A

Execute scripts on service PUT /api/v1/instances /api/v2/execute_scripts
/instances

/api/v3/execute_script/{name}

Scripts Get scripts GET /api/v1/scripts /api/v2/scripts /api/v3/scripts

Get script user inputs GET /api/v1/userInputs /api/v2/scripts/user_inputs /api/v3/scripts/{name}/user_inputs

System System health check (ping) GET /api/v1/ping /api/v2/ping /api/v3/ping

Sites Create Site POST N/A N/A /api/v3/sites

Update Site POST N/A N/A /api/v3/sites/{name}

Partial update site by Name PUT N/A N/A /api/v3/services/{name}

Get Site GET N/A N/A /api/v3/sites/{name}

Get Site List GET N/A N/A /api/v3/sites/

Delete Site DELETE N/A N/A /api/v3/sites/{name}

Monitoring Get Serivce Status GET N/A N/A /services/{name}/monitoring
/status

 Get All services status GET N/A N/A /api/v3/services/monitoring/status

Disaster
Recovery

Create DR Artifactory services
pair

POST N/A N/A /api/v3/dr-configs

115 JFrog Mission Control Version 2.0 User Guide.pdf

1.

2.
3.

1.

2.

Working with User Input
Overview
Mission Control provides you the flexibility of using placeholders in configuration scripts so that the user
can enter user input when the scripts are applied.

The REST API supports this capability through the REST API call. Get Script User Input

Running a Script with User Input
Running a script with user input through the REST API is done through the following main steps:

Run the REST API endpoint on the script.Get Script User Input
This will return a JSON object specifying the user input required
Modify the property of the required user input fields in the JSON objectname
Run the REST API endpoint passing in the modified user input JSON object as Execute Script
input

Page Contents

Overview
Running a Script with User
Input
Examples

Example 1 -
Modifying a
Repository
Example 2 -
Selecting the
Artifactory Service
to Modify

Examples
The following examples show how to run scripts through the REST API with user input.

Example 1 - Modifying a Repository
The following script modifies the field of a local repository called "my-repository" in an Artifactory service called "Denver" according to description
user input. Assume the script is called modify-description

artifactory('Denver'){
 localRepository("my-repository") {
 description userInput (
 type : "STRING",
 value : "This is a generic description",
 description : "Please provide a description"
)
 }
}

Call Get Script User Input
To get the user input required for the script, you need to make the following REST API call:

$ curl -XGET 'http://localhost:8080/api/v3/scripts/modify-description/user_inputs' -uadmin:password

This will return the following JSON object:

{
 "ArtifactoryDsl#0#LocalRepositoryDsl#0#description#0": {
 "name": "description",
 "description": "Please provide a description",
 "value": "This is a generic description",
 "type": "STRING",
 "multivalued": false
 }
}

Execute the script with the modified user input value

116 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Mission+Control+REST+API#MissionControlRESTAPI-GetScriptUserInput
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374696
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374696

2.

3.

1.

$ curl -XPUT 'http://localhost:8080/api/v3/execute_script/modify-description' -uadmin:password -H
'Content-Type: application/json; charset=UTF-8' -T scriptinput.json

where we pass in the script input JSON object as the following file:

scriptinput.json

{
 "ArtifactoryDsl#0#LocalRepositoryDsl#0#description#0": "*** This is my new description ***"
}

This produces the following output:

[
 {
 "instance": {
 "name": "Denver",
 "url": "http://artifactory-adi.jfrogdev.co/artifactory",
 "type": "ARTIFACTORY"
 },
 "status": "OK",
 "execution_duration": 514,
 "operation": "UPDATE_REPOSITORY"
 }
]

Example 2 - Selecting the Artifactory Service to Modify
In this example, we will modify the description of a local repository as in the previous example, however we will also receive the Artifactory service on
which to make the change as user input. Assume the script is called modify-description-select-service

name = userInput (
 type : "STRING",
 value : "Insert Artifactory Name",
 description : "Please provide Service name"
)
artifactory(name){
 localRepository("my-repository") {
 description userInput (
 type : "STRING",
 value : "This is a generic description",
 description : "Please provide a description"
)
 }
}

Call Get Script User Input

$ curl -XGET 'http://localhost:8080/api/v3/scripts/modify-description-select-service/user_inputs' -
uadmin:password

This will return the following JSON object:

117 JFrog Mission Control Version 2.0 User Guide.pdf

1.

2.

{
 "McDsl#0#name#0": {
 "name": "name",
 "description": "Please provide Service name",
 "value": "Insert Artifactory Name",
 "type": "STRING",
 "multivalued": false
 },
 "ArtifactoryDsl#0#LocalRepositoryDsl#0#description#0": {
 "name": "description",
 "description": "Please provide a description",
 "value": "This is a generic description",
 "type": "STRING",
 "multivalued": false
 }
}

Execute the script with the modified user input value

$ curl -XPUT 'http://localhost:8080/api/v3/execute_script/modify-description-select-service' -uadmin:
password -H 'Content-Type: application/json; charset=UTF-8' -T scriptinput.json

where we pass in the script input JSON object as the following file:

scriptinput.json

{
 "McDsl#0#name#0": "Denver",
 "ArtifactoryDsl#0#LocalRepositoryDsl#0#description#0": "description for local repository"
}

118 JFrog Mission Control Version 2.0 User Guide.pdf

Mission Control REST API v2
Overview
Mission Control exposes a rich REST API to allow fully automated management of Artifactory instances under your
control.

Version

We strongly recommend that you upgrade your scripts to the latest API version, and to facilitate the required
modifications, please refer to .V1 to V2 Mapping

Authentication
All Mission Control REST API endpoints require basic authentication using your username and password.

Error Handling
Mission Control REST API returns error responses in different formats depending on where the error occurred.

Top Level Errors

Top level errors are returned if the request cannot be executed, and have the following format:

{
 "errors" : [
 {
 "message" : <message>, // a descriptive error message
string
 "type" : <type> // The error
category
 }
]
}

For example:

{
 "errors": [
 {
 "message": "selected script has wrong type: REPOSITORY",
 "type": "Template processing"
 }
]
}

Deprecated

This version of Mission Control REST API v2 has been deprecated. We strongly recommend updating
your scripts to the latest version. For details, please refer to Mission Control REST API.

Exception

The endpoint does not require authentication.System Health Check

119 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC/Mission+Control+REST+API

Instance Errors

Instance errors are returned for API endpoints that act on instances, such as , or and others.Create User Create User Group Update Instance

{
 "data": [
 {
 "success": "false", // "false" indicates an error occurred
 "message": <message>, // A descriptive error message string
 "instanceName": <instance name> // The instance on which the error occurred
 }
]
}

For example:

Page Contents

Overview
Version
Authentication
Error Handling

Top Level Errors
Instance Errors
Repository Errors

Working with User Inputs
Mandatory Fields
Failure Policies

Supported Endpoints
REST Resources

SCRIPT MAPPINGS
Get Script List
List User Inputs

INSTANCES
Get Instances
Add Instance
Update Instance
Delete Instance
Execute Scripts on Instance
Get All Instances Status
Get Instance Status

REPOSITORIES
Get Repositories
Create Repository
Update Repository

SECURITY
Create User
Update User
Create User Group
Update User Group
Create Permission Target
Update Permission Target

LICENSE BUCKETS
Bucket Status
Attach License

DISASTER RECOVERY
Create a DR Pair

SYSTEM
System Health Check

V1 to V2 Mapping

120 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data": [
 {
 "success": true, //The action on
this instance succeeded
 "instanceName": "localhost:8091/artifactory"

 },
 {
 "success": false, //The action on
this instance failed
 "message": "Connection refused",
 "instanceName": "localhost:8081/artifactory"
 }
]
}

Repository Errors

Repository errors are returned for API endpoints that act on repositories, such as and others.Update Repository

{
 "data": [
 {
 "success": "false", // "false" indicates an error occurred
 "message": <message>, // A descriptive error message string
 "instanceName": <instance name>, // The instance on which the error occurred
 "repositoryKey": "maven-local" // The repository on which the error occurred
 }
]
}

For example:

{
 "data": [
 {
 "success": true, // This operation
succeeded
 "instanceName": "localhost:8091/artifactory",
 "repositoryKey": "maven-local"
 },
 {
 "success": false, // This
operation failed
 "message": "Connection refused",
 "instanceName": "localhost:8081/artifactory",
 "repositoryKey": "maven-local"
 }
]
}

Working with User Inputs
Mission control configuration scripts offer the flexibility of letting you provide input just before the script is applied. When working with the Mission Control
UI, the User Input screen allows you to enter all user input values required for the scripts you are about to apply.

When working with the REST API, another mechanism is provided that allows you to fully automate your management of Artifactory instances using Script
.Mappings

For a details on how to work with script mappings and user input with the Mission Control REST API, please refer to .Working with User Input

Mandatory Fields
For all endpoints, mandatory input fields are indicated by a plus sign (+).

121 JFrog Mission Control Version 2.0 User Guide.pdf

Failure Policies
Some of the endpoints in the Mission Control REST API perform multiple operations. For example may create several repositories on Create Repository
several Artifactory instances for a single API call. For , you may specify how the system should behave if a one of the operations in a supported endpoints
call fails by adding a "failurePolicy" tag to the JSON payload.

The options are:

Failure Policy Description

ignore [default]

Ignore the failure and continue with the remaining operations

rollback Roll back completed operations and cancel remaining ones

fail Cancel all remaining operations immediately upon any failure

retry Any failed operation should be retried once. If failure persists, all remaining operations should be cancelled

For example,

PUT /api/v2/security/permission_targets/{permission_target_name}
{
 "instancesIds":["art1","art2"],
 ...
 "failurePolicy" : "rollback" | "retry" | "fail" | "ignore"
}

Supported Endpoints

Create Repository
Update Repository
Execute Scripts on Instance
Create User
Update User
Create User Group
Update User Group
Create Permission Target
Update Permission Target

REST Resources
JFrog Mission Control is currently in its second version which is significantly different from version 1. The following sections describe the endpoints for
REST API v2

If you are still the REST API v1, please refer to . Mission Control REST API v1

If you are ready to upgrade to the latest REST API (v2), please refer to . V1 to V2 Mapping

SCRIPT MAPPINGS

Get Script List

Description: Gets the list of instance and repository configuration scripts available on Mission Control
 1.0Since:

Requires an admin userSecurity:
 GET /api/v2/scriptsUsage:

NoneConsumes:
application/jsonProduces:

122 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data": [
 {
 "name" : "string", // The script name
 "description" : "string", // The script description
 "target" : "INSTANCE" | "REPOSITORY" // Specifies whether this is an instance or
repository scripts
 }
]
}

Example:

GET /api/v2/scripts
{
 "data": [
 {
 "name": "local-default",
 "target": "REPOSITORY"
 },
 {
 "name": "remote-default",
 "target": "REPOSITORY"
 },
 {
 "name": "propertySet_prodready",
 "target": "INSTANCE"
 }
]
}

List User Inputs

Description: Gets the list of Artifactory user inputs needed for scripts that are being applied
1.0 Since:

Requires an admin user Security:
POST /api/v2/scripts/user_inputsUsage:

application/jsonConsumes:

{
+ "scriptMappings" : [{ //An array of scriptMapping objects
+ "instanceName" : <instance name>, // The instance on which you want to
apply a script
 "repositoryKey" : <string>, // The repository on which you want to apply the script
 // Mandatory if the operationType is UPDATE_REPOSITORY.
 // *** Not applicable and should be omitted *** if the operationType is
CREATE_REPOSITORY or UPDATE_INSTANCE
 "scriptNames" : [<script name>, <script name>, ...] //The names of the scripts you want
to apply
 }
]
 "operationType": "CREATE_REPOSITORY" | "UPDATE_REPOSITORY" | "UPDATE_INSTANCE" //The type of
operation you want to perform in the subsequent call with the user inputs returned
}

 Produces: application/json

123 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data":
 [
 {
 "success" : true,
 "instanceName" : "localhost:8091/artifactory",
 "repositoryKey" : "maven-local", // The repository on which the script
was applied
 // Only present if operationType was
UPDATE_REPOSITORY.
 "scriptUserInputs" : [
 {
 "multiple" : "boolean", // Whether this user input item
can take multiple values
 "type" : "STRING" | "BOOLEAN" | "INTEGER" | "INSTANCE" |
"REPOSITORY", // The type of this user input item
 "value" : "object", // A default value for this
user input item
 "description" : "string", // A description for this user input
item
 "name" : "string", // A logical name for this
user input item
 "id" : "string" // The identifier of this user
input item. This is the identifier that must be used in any subsequent API call
 }]
 }
]
}

Sample usage:

Assume the following scripts have been defined:

Script Name Script Body

local-string-userinput localRepository('local-userInput') {

 description = userInput (
 name : "User Friendly Name", // Optional
 type : "STRING", // "BOOLEAN", "INTEGER", "INSTANCE", "REPOSITORY"
 value : "default value",
 description : "please provide a value"
)
}

local-instance-userInput test = userInput (
 type : "INSTANCE"
)

localRepository('repo-variables') {
 description test.name
}

local-repo-userInput test = userInput (
 type : "REPOSITORY"
)

localRepository('repo-variables') {
 description test.name
}

124 JFrog Mission Control Version 2.0 User Guide.pdf

http://test.name/
http://test.name/
http://test.name/
http://test.name/

POST /api/v2/scripts/user_inputs
{
 "scriptMappings": [{
 "instanceName": "Master",
 "scriptNames": ["local-string-userInput", "local-instance-userInput", "local-repo-userInput"]
 }],
 "operationType" : "CREATE_REPOSITORY"
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "Master",
 "scriptUserInputs": [
 {
 "id": "RepositoryMapper#0#description#0",
 "name": "User Friendly Name",
 "description": "please provide a value",
 "value": "default value",
 "type": "STRING",
 "multiple": false
 },
 {
 "id": "TemplateExecutor#0#test#0",
 "name": "test",
 "type": "INSTANCE",
 "multiple": false
 },
 {
 "id": "TemplateExecutor#0#test#1",
 "name": "test",
 "type": "REPOSITORY",
 "multiple": false
 }
]
 }
]
}

INSTANCES

Get Instances

Description: Gets the list of Artifactory instances managed by Mission Control
 1.0 Since:

 Requires an admin userSecurity:
GET /api/v2/instancesUsage:

NoneConsumes:
 application/jsonProduces:

{
 "data": [
 {
 "name" : <string> //The Artifactory instance name
 "url" : <string>, //The Artifactory instance URL
 }
]
}

Example:

125 JFrog Mission Control Version 2.0 User Guide.pdf

GET /api/v2/instances
{
 "data": [
 {
 "name": "DRTarget",
 "url": "http://hostname-target/artifactory"
 },
 {
 "name": "Master",
 "url": "http://hostname-master/artifactory"
 },
 {
 "name": "AOL-ClusterNNN-100",
 "url": "https://mycompany.artifactoryonline.org/mycompany
 }
]
}

Add Instance

Description: Adds an Artifactory instance
1.0Since:

Requires an admin userSecurity:
 POST /api/v2/instancesUsage:

application/jsonConsumes:

{
 "name" : "<instance name>",
 "description": "<description text>",
 "url" : "<instance URL>",
 "username" : "<admin username>",
 "password" : "<admin password>",
 "location" : "<location text>"
}

Produces: application/json

Example: Add a node to an Artifactory HA cluster

POST /api/v2/instances
{
 "name" : "Master",
 "description": "description text",
 "url" : "http://artifactory-hostname/artifactory",
 "username" : "admin",
 "password" : "password",
 "location" : "node location"
}

Update Instance

Description: Updates an Artifactory instance
1.0Since:

Requires an admin userSecurity:
 PUT /api/v2/instances/{instance}Usage:

application/jsonConsumes:

126 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "description": "<description text>",
 "url" : "<instance URL>",
 "username" : "<admin username>",
 "password" : "<admin password>",
 "location" : "<location text>"
}

Produces: application/json

Example: Update Artifactory instance called "Master"

POST /api/v2/instances/Master
{
 "description": "new description text",
 "url" : "http://new-artifactory-hostname/artifactory",
 "username" : "new-admin",
 "password" : "new-password",
 "location" : "new node location"
}

Delete Instance

Description: Removes an Artifactory instance from Mission Control (doesn't do anything to the instance itself)
1.0Since:

Requires an admin userSecurity:
 DELETE /api/v2/instances/{instance}Usage:

Delete Artifactory instance called "AOL-ClusterNNN-100"Example:

DELETE /api/v2/instances/AOL-ClusterNNN-100

204

Execute Scripts on Instance

Description: Executes a set of scripts on a set of Artifactory instances
 1.3Since:

Requires an admin userSecurity:
 PUT /api/v2/execute_scripts/instancesUsage:

application/jsonConsumes:

{
 "scriptMappings": [
 {
 "instanceName": <Artifactory instance>,
 "scriptNames": [<script names>]
 }
]
}

Example: Apply scripts and to Artifactory instance called " ".ldapSettings1 propertySets1 Master

{
 "scriptMappings": [
 {
 "instanceName": "Master",
 "scriptNames": [
 "ldapSettings1", "propertySets1"
]
 }
]
}

127 JFrog Mission Control Version 2.0 User Guide.pdf

Get All Instances Status

Description: Gets the status of all managed Artifactory instances
 1.6 Since:

 Requires an admin userSecurity:
GET /api/v2/instances/monitoring/statusUsage:

NoneConsumes:
 application/jsonProduces:

{
 "data": [
 {
 "instanceName": <instance name>, //String
 "upTimeInSec": <Number of seconds instance has been up>, //Integer (when instanceState is ONLINE)
 "instanceState": <instance state> //String: ONLINE | OFFLINE | UNAUTHORIZED | ERROR
 }
]
}

Example

{
 "data": [
 {
 "instanceName": "test-instance-2",
 "instanceState": "OFFLINE"
 },
 {
 "instanceName": "test-instance-1",
 "upTimeInSec": 1744204,
 "instanceState": "ONLINE"
 }
]
}

Get Instance Status

Description: Gets the status of a specific managed Artifactory instance
 1.6 Since:

 Requires an admin userSecurity:
GET /api/v2/instances/[instance-name]/monitoring/statusUsage:

NoneConsumes:
 application/jsonProduces:

{
 "data":
 {
 "instanceName": <instance name>, //String
 "upTimeInSec": <Number of seconds instance has been up>, //Integer (when instanceState is ONLINE)
 "instanceState": <instance state> //String: ONLINE | OFFLINE | UNAUTHORIZED | ERROR
 }
}

Example

{
 "data": {
 "instanceName": "test-instance-1",
 "upTimeInSec": 1744204,
 "instanceState": "ONLINE"
 }
}

REPOSITORIES

128 JFrog Mission Control Version 2.0 User Guide.pdf

Get Repositories
Description: Gets a list of repositories in an Artifactory instance

 1.0Since:
Requires an admin userSecurity:

 GET /api/v2/instances/{instance name}/repositoriesUsage:
NoneConsumes:

application/jsonProduces:
Get a list of repositories in instance AOL-ClusterNNN-100.Example:

GET /api/v2/instances/cluster-126-10100/repositories
{
 "data": [
 {
 "repositoryKey": "libs-release-local",
 "description": "",
 "type": "local",
 "packageType": "maven"
 },
 {
 "repositoryKey": "libs-snapshot-local",
 "description": "",
 "type": "local",
 "packageType": "maven"
 },
 {
 "repositoryKey": "plugins-release-local",
 "description": "Local repository for plugins",
 "type": "local",
 "packageType": "maven"
 }
]
}

Create Repository

Description: Creates a repository in a set of Artifactory instances. For more information, please refer to in the Artifactory Configuring Repositories
documentation.

 1.0Since:
Requires an admin userSecurity:

POST /api/v2/execute_scripts/repositoriesUsage:
application/jsonConsumes:

{
 "scriptMappings":[
 {
+ "instanceName" : <string>, //Artifactory instance on which to create
the repository
 "scriptNames" : [<string>], //scripts to apply when creating the
repository
 "scriptUserInputs": //user inputs required for the scripts
applied. One of these should refer to the repositoryKey field
 {
 <userInputId> : <user input value> // userInputId obtained from
previous call to userInputs
 }
 }
]
}

Produces: application/json
Use the following script, to create a local repository with default values.Example:

129 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories

localRepository('local-default') {
 description "Public description"
 notes "Some internal notes"
 includesPattern "**/*" // default
 excludesPattern "" // default
 repoLayoutRef "maven-2-default"
 packageType "generic" // "maven" | "gradle" | "ivy" | "sbt" | ... | "generic"
 debianTrivialLayout false
 checksumPolicyType "client-checksums" // default | "server-generated-checksums"
 handleReleases true // default
 handleSnapshots true // default
 maxUniqueSnapshots 0 // default
 snapshotVersionBehavior "unique" // "non-unique" default | "deployer"
 suppressPomConsistencyChecks false // default
 blackedOut false // default
 propertySets // (["ps1", "ps2"])
 archiveBrowsingEnabled false
 calculateYumMetadata false
 yumRootDepth 0
}

POST /api/v2/execute_scripts/repositories
{
 "scriptMappings":[
 {
 "instanceName": "DRTarget",
 "scriptNames":[
 "local-default"
]
 }
]
}

Update Repository

Description: Updates a repository in a set of Artifactory instances. For more information, please refer to in the Artifactory Configuring Repositories
documentation.

 1.0Since:
Requires an admin userSecurity:

PUT /api/v2/execute_scripts/repositoriesUsage:
application/jsonConsumes:

{
 "scriptMappings" :[
 {
+ "instanceName" : <string>, //Artifactory instance on which to update the
repository
+ "repositoryKey" : <string>, //Name of the repository to update
 "scriptNames" :[<string>], //scripts to apply when updating the repository.
The user inputs must be provided in an order that corresponds to the script names.
 "scriptUserInputs" : //user inputs required for the scripts applied
 {
 <userInputId> : <user input value> // string or object, depending on
the user input type
 }
 }
]
}

Produces: application/json
Use the following script called to update the description field on local repository on instance Example: local-repo-userinput ext-release-local M

aster.

130 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories

test = userInput (
 type : "REPOSITORY"
)
 localRepository('repo-variables') {
 description test.name
 }

PUT /api/v2/execute_scripts/repositories
{
 "scriptMappings":[
 {
 "instanceName": "Master",
 "repositoryKey": "ext-release-local",
 "scriptNames":[
 "local-repo-userInput"
],
 "scriptUserInputs" : {
 "TemplateExecutor#0#test#0": {"instanceName": "Master", "repositoryKey": "ext-release-
local" }
 }
 }
]
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "Master",
 "repositoryKey": "ext-release-local"
 }
]
}

SECURITY

Create User

Description: Creates a user on a set of Artifactory instances. For more information, please refer to in the Artifactory documentation.Managing Users
 1.0Since:

Requires an admin userSecurity:
 POST /api/v2/security/usersUsage:

application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on
which to create this user
+ "user" :
 {
+ "name" : <string>, // The user's name
+ "email" : <string>, // The
user's email
+ "password" : <string>, // The user's password
in clear-text
 "admin" : <boolean>, // If true,
this is an admin user
 "profileUpdatable" : <boolean>, // If true, this user can update
their profile
 "internalPasswordDisabled" : <boolean> // If true, this user cannot use internal
password when external authentication (such as LDAP) is enabled.
 }
}

131 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users

Produces: application/json
Create user "johns" with the below parameters on Artifactory instances "cluster-121-10100" and "cluster-126-10100"Example:

POST /api/v2/security/users
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "user": {
 "name": "johns",
 "email": "johns@somewhere.com",
 "password": "12345678",
 "admin": false,
 "profileUpdatable": false,
 "internalPasswordDisabled": false
 }
}

Response body:
{
 "data": [
 {
 "success": true,
 "instanceName": "cluster-121-10100"
 },
 {
 "success": true,
 "instanceName": "cluster-126-10100"
 }
]
}

Update User

Description: Updates a user on a set of Artifactory instances. For more information, please refer to in the Artifactory documentation.Managing Users
 1.0Since:

Requires an admin userSecurity:
 PUT /api/v2/security/users/{username}Usage:

application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on which to create
this user
+ user:
 {
+ "email" : <string>, // The user's email
 "password" : <string>, // The user's password in clear-text
 "admin" : <boolean>, // If true, this is an admin user
 "profileUpdatable" : <boolean>, // If true, this user can update their profile
 "internalPasswordDisabled" : <boolean> // If true, this user cannot use internal password
when external authentication (such as LDAP) is enabled.
 }
}

Produces: application/json

Example: Update the parameters of user "johns" in Artifactory instances "cluster-121-10100" and "cluster-126-10100"

132 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users

PUT /api/v2/security/users/johns
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "user": {
 "name" : "johns"
 "email": "johns@newdomain.com"
 "password": "changed",
 "admin": false,
 "profileUpdatable": true,
 "internalPasswordDisabled": false
 }
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "cluster-121-10100"
 },
 {
 "success": true,
 "instanceName": "cluster-126-10100"
 }
]
}

Create User Group

Description: Creates a user group on a set of Artifactory instances. For more information please refer to in the Artifactory Creating and Editing Groups
documentation.

 1.0Since:
Requires an admin userSecurity:

 POST /api/v2/security/user_groupsUsage:
application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on which to create
this user
+ "userGroup" : {
+ "name" : <string>, // The group's name
 "description" : <string>, // A description for this group
 "autoJoin" : <boolean>, // If true, new users created in the target Artifactory instance
will automatically be added to this group
 "users" : [<string>] // The list of users (by user name) to include in this group
 }
}

Produces: application/json
Creates a user group called "developers" along with the specified parameters on Artifactory instances "cluster-121-10100" and "cluster-126-Example:

10100"

133 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingGroups

POST /api/v2/security/user_groups
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "userGroup": {
 "name": "developers",
 "description": "The developer group",
 "autoJoin": false,
 "users": ["johns", "ronaldm"]
 }
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "cluster-121-10100"
 },
 {
 "success": true,
 "instanceName": "cluster-126-10100"
 }
]
}

Update User Group

Description: Updates a user group on a set of Artifactory instances. For more information please refer to in the Artifactory Creating and Editing Groups
documentation.

 1.0Since:
Requires an admin userSecurity:

 PUT /api/v2/security/user_groups/{group name}Usage:
application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on which to update
this group
+ "userGroup:{
 "name" : <string>
 "autoJoin" : <boolean>, // If true, new users created in the target Artifactory instance
will automatically be added to this group
 "description" : <string> // A description for this group
 "users" : [<string>], // The new list of users (by user name) to include in this group.
This list replaces the current set of users in the group
 }
}

Produces: application/json
Update the "developers" user group with the specified parameters on Artifactory instances "cluster-121-10100" and "cluster-126-10100"Example:

134 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingGroups

PUT /api/v2/security/user_groups/developers
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "userGroup": {
 "name" : "developers,"
 "description": "The changed developer group",
 "autoJoin": false,
 "users": []
 }
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "cluster-121-10100"
 },
 {
 "success": true,
 "instanceName": "cluster-126-10100"
 }
]
}

Create Permission Target

Description: Creates a permission target on a set of Artifactory instances. For more information, please refer to in the Artifactory Managing Permissions
documentation.

 1.0Since:
Requires an admin userSecurity:

 POST /api/v2/security/permission_targetsUsage:
application/jsonConsumes:

{
+ "instanceNames" : [<string>], // The Artifactory instances to which this
permission target should be applied
+ "permissionTarget" : {
+ "name" : <string>, // A name for this permission target
+ "repositories" : [<string>], // The repositories to which this permission
target applies
 "anyRemote" : <boolean>, // If true, applies to any remote repository
 "anyLocal" : <boolean>, // If true, applies to any local repository
 "excludesPattern" : <string>, // Excludes pattern to filter out certain
repositories
 "includesPattern" : <string>, // Includes pattern to filter in certain
repositories
 "principals": // The principles to which this permission target should be applied
 {
 "users" :
 {
 <userName> : [{permission}] // The users and corresponding permissions they are
given where m=admin; d=delete; w=deploy; n=annotate; r=read
 },
 "groups" :
 {
 <groupName> : [{permission}] // The groups and corresponding permissions they
are given where m=admin; d=delete; w=deploy; n=annotate; r=read
 }
 }
 }
}

Produces: application/json
Creates a permission target called "releasers" on repository "ext-release-local" for users "johns" and "colonels" and groups "developers" and Example:

"itmanagers" (each with corresponding permissions) on Artifactory instances "cluster-121-10100" and "cluster-126-10100".

135 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Permissions

POST /api/v2/security/permission_targets
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "permissionTarget" : {
 "name" : "releasers",
 "includesPattern" : "**",
 "excludesPattern" : "",
 "anyLocal" : true,
 "anyRemote" : false,
 "repositories" : ["ext-release-local"],
 "principals": {
 "users" : {
 "johns": ["r","w","m"],
 "colonels" : ["d","w","n","r"]
 },
 "groups" : {
 "developers" : ["m","r","n"],
 "itmanagers" : ["r"]
 }
 }
 }
}

Response:
{
 "data": [
 {
 "success": true,
 "instanceName": "cluster-121-10100"
 },
 {
 "success": true,
 "instanceName": "cluster-126-10100"
 }
]
}

Update Permission Target

Description: Updates a permission target on a set of Artifactory instances. Any permissions previously set for users or groups are replaced with the
specified permissions. For more information, please refer to in the Artifactory documentation.Managing Permissions

 1.0Since:
Requires an admin userSecurity:

 PUT /api/v2/security/permission_targets/{permission target name}Usage:
application/jsonConsumes:

136 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Permissions

{
+ "instanceNames" : [<string>], // The Artifactory instances to which this
permission target should be applied
+ "permissionTarget" :
 {
+ "repositories" : [<string>], // The repositories to which this permission
target applies
 "anyRemote" : <boolean>, // If true, applies to any remote repository
 "anyLocal" : <boolean>, // If true, applies to any local repository
 "excludesPattern" : <string>, // Excludes pattern to filter out certain
repositories
 "includesPattern" : <string>, // Includes pattern to filter in certain
repositories
 "principals" : // The principles to which this permission target should be applied
 {
 "users" :
 {
 <userName> : [{permission}] // The users and corresponding permissions they are
given where m=admin; d=delete; w=deploy; n=annotate; r=read
 },
 "groups" :
 {
 <groupName> : [{permission}] // The groups and corresponding permissions they
are given where m=admin; d=delete; w=deploy; n=annotate; r=read
 }
 }

 }
}

Produces: application/json
Updates the permission target called "releasers" on repository "ext-release-local" for "itmanagers" awarding them full permissions on any Example:

remote repository on Artifactory instances "cluster-121-10100" and "cluster-126-10100".

PUT /api/v2/permissionTargets/releasers
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "permissionTarget" : {
 "anyRemote" : true,
 "repositories" : ["ext-release-local"],
 "principals": {
 "users" : {
 "colonels" : ["d","w","n","r"]
 },
 "groups" : {
 "itmanagers" : ["d","w","n","r"]
 }
 }
 }
}

LICENSE BUCKETS

Bucket Status

Description: Gets the status of the specified license bucket .
 1.3Since:

NoneSecurity:
 GET /api/v2/buckets/{bucket-name}/reportUsage:

NoneConsumes:
 application/json Produces:

137 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data": {
 "id": <bucket-id>,
 "size": <number of licenses in the bucket>,
 "licenses": {
 "used": <number of licenses currently being used>,
 "available": <number of licenses currently available>,
 "maxUsed": <max number of licenses that were ever used concurrently>,
 }
 }
}

Sample usage: Get the status of bucket with ID abcdefg

GET /api/v2/buckets/abcdefg/report
{
 "data": {
 "id": "abcdefg",
 "size": 14,
 "licenses": {
 "used": 1,
 "available": 13,
 "maxUsed": 1
 }
 }
}

Attach License

Description: Attaches a license from the specified bucket, or a number of licenses to an Artifactory 5.x HA cluster.
 1.3Since:

NoneSecurity:
 POST /api/v2/attach_lic/buckets/{bucket-name}Usage:

application/jsonConsumes:

{
 "instanceName" : <Artifactory instance to which the license should be attached>,
 "deploy" : true <If true, the license is actually deployed to the instance>,
 "numberOfLicenses" : < number of licenses to deploy to an Artifactory 5.x HA cluster. Optional, default
value is 1>,
}

Sample usage:

POST /api/v2/attach_lic/buckets/abcdefg
{
 "instanceName" : "Master",
 "deploy" : true,
 "numberOfLicenses" : 7
}

Response:
{
 "data": {
 "success": true,
 "message": "License deployed to instance Master"
 }
}

Detach License

138 JFrog Mission Control Version 2.0 User Guide.pdf

Description: Detaches a license from an Artifactory instance and returns it to the specified bucket
 1.3Since:

NoneSecurity:
 DELETE /api/v2/detach_lic/buckets/{bucket-name}Usage:

application/jsonConsumes:

{
 "InstanceName" : <Artifactory instance from which to detach the license>
}

Sample usage:

DELETE /api/v2/detach_lic/buckets/abcdefg
{
 "InstanceName" : "Master"
}

Response (success)
2014

Response (error - instance is online)
{
 "errors": [
 {
 "type": "Exception",
 "message": "Instance `Master' is still using the license."
 }
]
}

DISASTER RECOVERY

Create a DR Pair

Description: Matches up a Master and Target instance as a DR pair.
 1.5Since:

NoneSecurity:
 POST /api/v2/dr-configsUsage:

application/json Consumes:

{
 "source": "master_instance_name",
 "target": "target_instance_name"
}

Sample usage:

139 JFrog Mission Control Version 2.0 User Guide.pdf

POST /api/v2/dr-configs
{
 "source": "corp-west",
 "target": "corp-west-dr"
}

Response:
{
 "data": {
 "id": "0be405a8-2713-4ec6-a775-d34072e1b2d5",
 "sourceId": "276dd14f-8579-4f64-967e-46214fc7eafe",
 "targetId": "dac1f570-096d-4104-9b06-881588e0adc0",
 "active": "NONE",
 "drReplicationsEnabled": false,
 "state": "NONE"
 }
}

SYSTEM

System Health Check

Description: Simple ping to Mission Control to see if it is running.
 1.0Since:

NoneSecurity:
 GET /api/v2/pingUsage:

NoneConsumes:
 application/json Produces:

{
 "data" : true
}

V1 to V2 Mapping
To facilitate updating your scripts to use the latest API, the following table presents a mapping between endpoints in V1 and the corresponding endpoints
in V2 of the REST API.

Category Description Method V1 Endpoint V2 Endpoint

Instances Get list of artifactory instances GET /api/v1/instances /api/v2/instances

Add instance POST /api/v1/instances /api/v2/instances

Update Instance PUT Not available /api/v2/instances/{name}

Get repositories for instance GET /api/v1/instances/{name}/repositories /api/v2/instances/{name}/repositories

Delete instance by name DELETE /api/v1/instances/{name} /api/v2/instances/{name}

Security Create user POST api/v1/users /api/v2/security/users

Update user PUT /api/v1/users/{name} /api/v2/security/users/{name}

Create user group POST /api/v1/userGroups /api/v2/security/user_groups

Update user group PUT /api/v1/userGroups/{name} /api/v2/security/user_groups/{name}

Create permission target POST /api/v1/permissionTargets /api/v2/security/permission_targets

Update permission target by name PUT /api/v1/permissionTargets/{name} /api/v2/security/permission_targets/{name}

License Buckets Get bucket status GET /api/v1/buckets/{id}/status /api/v2/buckets/{id}/report

Attach a license POST /api/v1/buckets/{id}/licenses /api/v2/attach_lic/buckets/{id}

Detach a license DELETE /api/v1/buckets/{id}/licenses /api/v2/detach_lic/buckets/{id}

Execute Scripts Create repository POST /api/v1/repositories /api/v2/execute_scripts/repositories

Update repository PUT /api/v1/repositories /api/v2/execute_scripts/repositories

Execute scripts on instance PUT /api/v1/instances /api/v2/execute_scripts/instances

140 JFrog Mission Control Version 2.0 User Guide.pdf

Scripts Get scripts GET /api/v1/scripts /api/v2/scripts

Get script user inputs GET /api/v1/userInputs /api/v2/scripts/user_inputs

System System health check (ping) GET /api/v1/ping /api/v2/ping

141 JFrog Mission Control Version 2.0 User Guide.pdf

Mission Control REST API v1
Overview
Mission Control exposes a rich REST API to allow fully automated management of Artifactory instances under your
control.

Version

Authentication
All Mission Control REST API endpoints require authentication using user/password.

Error Handling
Mission Control REST API returns error responses in different formats depending on where the error occurred.

Top Level Errors

Top level errors are returned if the request cannot be executed, and have the following format:

{
 "errors" : [
 {
 "message" : <message>, // a descriptive error message
string
 "type" : <type> // The error
category
 }
]
}

For example:

{
 "errors": [
 {
 "message": "selected script has wrong type: REPOSITORY",
 "type": "Template processing"
 }
]
}

Deprecated

 This version of Mission Control REST API has been deprecated. We strongly recommend updating your
scripts to the latest version. For details, please refer to .Mission Control REST API

Exception

The endpoint does not require authentication.System Health Check

142 JFrog Mission Control Version 2.0 User Guide.pdf

Instance Errors

Instance errors are returned for API endpoints that act on instances, such as , or and others.Create User Create User Group Update Instance

{
 "data": [
 {
 "success": "false", // "false" indicates an error occurred
 "message": <message>, // A descriptive error message string
 "instanceName": <instance name> // The instance on which the error occurred
 }
]
}

For example:

{
 "data": [
 {
 "success": true, //The action on
this instance succeeded
 "instanceName": "localhost:8091/artifactory"

 },
 {
 "success": false, //The action on
this instance failed
 "message": "Connection refused",
 "instanceName": "localhost:8081/artifactory"
 }
]
}

Repository Errors

Repository errors are returned for API endpoints that act on repositories, such as and othersUpdate Repository .

Page Contents

Overview
Version

Error Handling
Top Level Errors
Instance Errors
Repository Errors

Working with User Inputs
Mandatory Fields

REST Resources
SCRIPT MAPPINGS

Get Script List
List User Inputs

INSTANCES
Get Instances
Update Instance

REPOSITORIES
Get Repositories
Create Repository
Update Repository

SECURITY
Create User
Update User
Create User Group
Update User Group
Create Permission Target
Update Permission Target

SYSTEM
System Health Check

143 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data": [
 {
 "success": "false", // "false" indicates an error occurred
 "message": <message>, // A descriptive error message string
 "instanceName": <instance name>, // The instance on which the error occurred
 "repositoryKey": "maven-local" // The repository on which the error occurred
 }
]
}

For example:

{
 "data": [
 {
 "success": true, // This operation
succeeded
 "instanceName": "localhost:8091/artifactory",
 "repositoryKey": "maven-local"
 },
 {
 "success": false, // This
operation failed
 "message": "Connection refused",
 "instanceName": "localhost:8081/artifactory",
 "repositoryKey": "maven-local"
 }
]
}

Working with User Inputs
Mission control configuration scripts offer the flexibility of letting you provide input just before the script is applied. When working with the Mission Control
UI, the User Input screen allows you to enter all user input values required for the scripts you are about to apply.

When working with the REST API, another mechanism is provided that allows you to fully automate your management of Artifactory instances using Script
.Mappings

For a details on how to work with script mappings and user input with the Mission Control REST API, please refer to .Working with User Input

Mandatory Fields
For all endpoints, mandatory input fields are indicated by a plus sign (+).

REST Resources
The following sections provide a comprehensive list of exposed by the Mission Control REST API.resources

SCRIPT MAPPINGS

Get Script List

Description: Gets the list of instance and repository configuration scripts available on Mission Control
 1.0Since:

Requires an admin userSecurity:
 GET /api/v1/scriptsUsage:

NoneConsumes:
application/jsonProduces:

144 JFrog Mission Control Version 2.0 User Guide.pdf

{
 "data": [
 {
 "name" : "string", // The script name
 "description" : "string", // The script description
 "target" : "INSTANCE" | "REPOSITORY" // Specifies whether this is an instance or
repository scripts
 }
]
}

Example:

GET /api/v1/scripts
{
 "data": [
 {
 "name" : "QA Property Sets",
 "description" : "Applies property sets used by QA",
 "target" : "INSTANCE"
 },
 {
 "name" : "LDAP Dev",
 "description" : "Applies development group LDAP settings",
 "target" : "INSTANCE"
 },
 ...
 {
 "name" : "Docker Local",
 "description" : "Creates a local Docker repo called docker-local",
 "target" : "REPOSITORY"

 },
 {
 "name" : "Replicate releases-local",
 "description" : "Replicates releases-local repository to a target repo",
 "target" : "REPOSITORY"
 },
]
}

List User Inputs
Description: Gets the list of Artifactory user inputs needed for scripts that are being applied

1.0 Since:
Requires an admin user Security:

POST /api/v1/userInputsUsage:
application/jsonConsumes:

{
+ "scriptMappings" : [{ //An array of scriptMapping objects
+ "instanceName" : <instance name>, // The instance on which you want to
apply a script
 "repositoryKey" : <string>, // The repository on which you want to apply the script
 // Mandatory if the operationType is UPDATE_REPOSITORY.
 // *** Not applicable and should be omitted *** if the operationType is
CREATE_REPOSITORY or UPDATE_INSTANCE
 "scriptNames" : [<script name>, <script name>, ...] //The names of the scripts you want
to apply
 }
]
 "operationType": "CREATE_REPOSITORY" | "UPDATE_REPOSITORY" | "UPDATE_INSTANCE" //The type of
operation you want to perform in the subsequent call with the user inputs returned
}

145 JFrog Mission Control Version 2.0 User Guide.pdf

 Produces: application/json

{
 "data":
 [
 {
 "success" : true,
 "instanceName" : "localhost:8091/artifactory",
 "repositoryKey" : "maven-local", // The repository on which the script
was applied
 // Only present if operationType was
UPDATE_REPOSITORY.
 "scriptUserInputs" : [
 {
 "multiple" : "boolean", // Whether this user input item
can take multiple values
 "type" : "STRING" | "BOOLEAN" | "INTEGER" | "INSTANCE" |
"REPOSITORY", // The type of this user input item
 "value" : "object", // A default value for this
user input item
 "description" : "string", // A description for this user input
item
 "name" : "string", // A logical name for this
user input item
 "id" : "string" // The identifier of this user
input item. This is the identifier that must be used in any subsequent API call
 }]
 }
]
}

INSTANCES

Get Instances

Description: Gets the list of Artifactory instances managed by Mission Control
 1.0 Since:

 Requires an admin userSecurity:
GET /api/v1/instancesUsage:

NoneConsumes:
 application/jsonProduces:

{
 "data": [
 {
 "url" : <string>, //The Artifactory instance URL
 "name" : <string> //The Artifactory instance name
 }
]
}

Example:

146 JFrog Mission Control Version 2.0 User Guide.pdf

GET /api/v1/instances
{
 "data": [
 {
 "url":"http://10.0.0.110:8080/artifactory",
 "name":"QA"
 },
 {
 "url":"http://10.0.0.120:8080/artifactory",
 "name":"DEV"
 }
]
}

Update Instance

Description: Updates an array of Artifactory instances with corresponding scripts
1.0Since:

Requires an admin userSecurity:
 PUT /api/v1/instancesUsage:

application/jsonConsumes:

{
 "scriptMappings": [
 {
+ "instanceName" : <string>, // The name of the instance being updated
 "scriptNames" : [<string>], // Scripts to apply
 "scriptUserInputs": // The user inputs needed for the
applied scripts (if any)
 {
 <userInputId> : <user input value> // string or object,
depending on the user input type
 }
 }
]
}

Produces: application/json

Example: Update Artifactory instances "DEV" and "QA" by applying script "LDAP Settings" to each of them. When applying this script, I need to provide a
name for the LDAP settings with user input

PUT /api/v1/instances
{
 "scriptMappings" : [
 {
 "instanceName":"DEV",
 "scriptNames":["LDAP Settings"],
 "scriptUserInputs" :
 {
 "InstanceMapper#0#name#0" : "DEV-LDAP"
 }
 },
 {
 "instanceName":"QA",
 "scriptNames":["LDAP Settings"],
 "scriptUserInputs" :
 {
 "InstanceMapper#0#name#0" : "QA-LDAP"
 }
 }
]
}

147 JFrog Mission Control Version 2.0 User Guide.pdf

REPOSITORIES

Get Repositories

Description: Gets a list of repositories in an Artifactory instance
 1.0Since:

Requires an admin userSecurity:
 GET /api/v1/instances/{instance name}/repositoriesUsage:

NoneConsumes:
application/jsonProduces:

Get a list of repositories in instance cluster-126-10100.Example:

GET /api/v1/instances/cluster-126-10100/repositories

Response:
{
 "data": [
 {
 "repositoryKey": "ext-release-local",
 "description": "Local repository for third party libraries",
 "type": "local",
 "packageType": "maven"
 },
 {
 "repositoryKey": "ext-snapshot-local",
 "description": "Local repository for third party snapshots",
 "type": "local",
 "packageType": "maven"
 },

...

 {
 "repositoryKey": "plugins-snapshot",
 "type": "virtual",
 "packageType": "maven"
 },
 {
 "repositoryKey": "remote-repos",
 "type": "virtual",
 "packageType": "maven"
 }
]
}

Create Repository

Description: Creates a repository in a set of Artifactory instances. For more information, please refer to in the Artifactory Configuring Repositories
documentation.

 1.0Since:
Requires an admin userSecurity:

POST /api/v1Usage: /repositories
application/jsonConsumes:

148 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories

{
 "scriptMappings":[
 {
+ "instanceName" : <string>, //Artifactory instance on which to create
the repository
 "scriptNames" : [<string>], //scripts to apply when creating the
repository
 "scriptUserInputs": //user inputs required for the scripts
applied. One of these should refer to the repositoryKey field
 {
 <userInputId> : <user input value> // userInputId obtained from
previous call to userInputs
 }
 }
]
}

Produces: application/json
Use a script called create-docker-local to create a local Docker registry. From a previous call to we found that we need to supply the Example: userInputs

repository key as user input in the parameter. We are creating the same repository on instances DEV-EAST RepositoryMapper#0#repositoryKey#0
and QA-EAST.

POST /api/v1/repositories
{
 "scriptMappings":[
 {
 "instanceName" : "DEV-EAST",
 "scriptNames" : ["create-docker-local"],
 "scriptUserInputs":
 {
 "RepositoryMapper#0#repositoryKey#0" : "dev-docker-local"
 }
 },
 {
 "instanceName" : "QA-EAST",
 "scriptNames" : ["create-docker-local"],
 "scriptUserInputs":
 {
 "RepositoryMapper#0#repositoryKey#0" : "qa-docker-local"
 }
 }
]
}

Update Repository

Description: Updates a repository in a set of Artifactory instances. For more information, please refer to in the Artifactory Configuring Repositories
documentation.

 1.0Since:
Requires an admin userSecurity:

PUT /api/v1/repositoriesUsage:
application/jsonConsumes:

149 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories

{
 "scriptMappings" :[
 {
+ "instanceName" : <string>, //Artifactory instance on which to update the
repository
+ "repositoryKey" : <string>, //Name of the repository to update
 "scriptNames" :[<string>], //scripts to apply when updating the repository.
The user inputs provided be provided in an order that corresponds to the script names.
 "scriptUserInputs" : //user inputs required for the scripts applied
 {
 <userInputId> : <user input value> // string or object, depending on
the user input type
 }
 }
]
}

Produces: application/json
Use a script called update-local to update the description field on local repository dev-docker-local on DEV-EAST, and local repository qa-Example:

docker-local on QA-EAST.

POST /api/v1/repositories
{
 "scriptMappings":[
 {
 "instanceName" : "DEV-EAST",
 "repositoryKey" : "dev-docker-local",
 "scriptNames" : ["update-local"],
 "scriptUserInputs":
 {
 "RepositoryMapper#0#description#0" : "Local Docker registry for
dev"
 }
 },
 {
 "instanceName" : "QA-EAST",
 "repositoryKey" : "qa-docker-local",
 "scriptNames" : ["update-local"],
 "scriptUserInputs":
 {
 "RepositoryMapper#0#description#0" : "Local Docker registry for
qa"
 }
 }
]
}

SECURITY

Create User

Description: Creates a user on a set of Artifactory instances. For more information, please refer to in the Artifactory documentation.Managing Users
 1.0Since:

Requires an admin userSecurity:
 POST /api/v1/usersUsage:

application/jsonConsumes:

150 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users

{
+ "instanceNames":[<string>], // The Artifactory instances on
which to create this user
+ "user" :
 {
+ "name" : <string>, // The user's name
+ "email" : <string>, // The
user's email
+ "password" : <string>, // The user's password
in clear-text
 "admin" : <boolean>, // If true,
this is an admin user
 "profileUpdatable" : <boolean>, // If true, this user can update
their profile
 "internalPasswordDisabled" : <boolean> // If true, this user cannot use internal
password when external authentication (such as LDAP) is enabled.
 }
}

Produces: application/json
Create user "johns" with the below parameters on Artifactory instances "cluster-121-10100" and "cluster-126-10100"Example:

POST /api/v1/users
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "user": {
 "name": "johns",
 "email": "johns@somewhere.com",
 "password": "12345678",
 "admin": false,
 "profileUpdatable": false,
 "internalPasswordDisabled": false
 }
}

Update User

Description: Updates a user on a set of Artifactory instances. For more information, please refer to in the Artifactory documentation.Managing Users
 1.0Since:

Requires an admin userSecurity:
 PUT /api/v1/users/{username}Usage:

application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on which to create
this user
+ user:
 {
+ "email" : <string>, // The user's email
 "password" : <string>, // The user's password in clear-text
 "admin" : <boolean>, // If true, this is an admin user
 "profileUpdatable" : <boolean>, // If true, this user can update their profile
 "internalPasswordDisabled" : <boolean> // If true, this user cannot use internal password
when external authentication (such as LDAP) is enabled.
 }
}

Produces: application/json

Example: Update the email address of user "johns" Artifactory instances "cluster-121-10100" and "cluster-126-10100"

151 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users

PUT /api/v1/users/johns
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "user": {
 "email": "johns@newdomain.com"
 }
}

Create User Group

Description: Creates a user group on a set of Artifactory instances. For more information please refer to in the Artifactory Creating and Editing Groups
documentation.

 1.0Since:
Requires an admin userSecurity:

 POST /api/v1/Usage: userGroups
application/jsonConsumes:

{
+ "instanceNames":[<string>], // The Artifactory instances on which to create
this user
+ "userGroup" : {
+ "name" : <string>, // The group's name
 "description" : <string>, // A description for this group
 "autoJoin" : <boolean>, // If true, new users created in the target Artifactory instance
will automatically be added to this group
 "users" : [<string>] // The list of users (by user name) to include in this group
 }
}

Produces: application/json
Creates a user group called "developers" along with the specified parameters on Artifactory instances "cluster-121-10100" and "cluster-126-Example:

10100"

POST /api/v1/userGroups
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"], // The Artifactory
instances on which to create this group
 "userGroup": {
 "name": "developers",
 "description": "The developer group",
 "autoJoin": false,
 "users": ["johns", "ronaldm"]
 }
}

Update User Group

Description: Updates a user group on a set of Artifactory instances. For more information please refer to in the Artifactory Creating and Editing Groups
documentation.

 1.0Since:
Requires an admin userSecurity:

 PUT /api/v1/userGroups/{group name}Usage:
application/jsonConsumes:

152 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingGroups
https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingGroups

{
+ "instanceNames":[<string>], // The Artifactory instances on which to update
this group
+ "userGroup:{
 "users" : [<string>], // The new list of users (by user name) to include in this group.
This list replaces the current set of users in the group
 "autoJoin" : <boolean>, // If true, new users created in the target Artifactory instance
will automatically be added to this group
 "description" : <string> // A description for this group
 }
}

Produces: application/json
Update the "developer" user group with the specified parameters on Artifactory instances "cluster-121-10100" and "cluster-126-10100"Example:

PUT /api/v1/userGroups/developers
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "userGroup": {
 "description": "The developer group",
 "autoJoin": false,
 "users": ["janes", "colonels"]
 }
}

Create Permission Target

Description: Creates a permission target on a set of Artifactory instances. For more information, please refer to in the Artifactory Managing Permissions
documentation.

 1.0Since:
Requires an admin userSecurity:

 POST /api/v1/permissionTargetsUsage:
application/jsonConsumes:

{
+ "instanceNames" : [<string>], // The Artifactory instances to which this
permission target should be applied
+ "permissionTarget" : {
+ "name" : <string>, // A name for this permission target
+ "repositories" : [<string>], // The repositories to which this permission
target applies
 "anyRemote" : <boolean>, // If true, applies to any remote repository
 "anyLocal" : <boolean>, // If true, applies to any local repository
 "excludesPattern" : <string>, // Excludes pattern to filter out certain
repositories
 "includesPattern" : <string>, // Includes pattern to filter in certain
repositories
 "principals": // The principles to which this permission target should be applied
 {
 "users" :
 {
 <userName> : [{permission}] // The users and corresponding permissions they are
given where m=admin; d=delete; w=deploy; n=annotate; r=read
 },
 "groups" :
 {
 <groupName> : [{permission}] // The groups and corresponding permissions they
are given where m=admin; d=delete; w=deploy; n=annotate; r=read
 }
 }
 }
}

153 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Permissions

Produces: application/json
Creates a permission target called "releasers" on repository "ext-release-local" for users "johns" and "colonels" and groups "developers" and Example:

"itmanagers" (each with corresponding permissions) on Artifactory instances "cluster-121-10100" and "cluster-126-10100".

POST /api/v1/permissionTargets
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "permissionTarget" : {
 "name" : "releasers",
 "includesPattern" : "**",
 "excludesPattern" : "",
 "anyLocal" : true,
 "anyRemote" : false,
 "repositories" : ["ext-release-local"],
 "principals": {
 "users" : {
 "johns": ["r","w","m"],
 "colonels" : ["d","w","n","r"]
 },
 "groups" : {
 "developers" : ["m","r","n"],
 "itmanagers" : ["r"]
 }
 }
 }
}

Update Permission Target

Description: Updates a permission target on a set of Artifactory instances. Any permissions previously set for users or groups are replaced with the
specified permissions. For more information, please refer to in the Artifactory documentation.Managing Permissions

 1.0Since:
Requires an admin userSecurity:

 PUT /api/v1/permissionTargets/{permission target name}Usage:
application/jsonConsumes:

{
+ "instanceNames" : [<string>], // The Artifactory instances to which this
permission target should be applied
+ "permissionTarget" :
 {
+ "repositories" : [<string>], // The repositories to which this permission
target applies
 "anyRemote" : <boolean>, // If true, applies to any remote repository
 "anyLocal" : <boolean>, // If true, applies to any local repository
 "excludesPattern" : <string>, // Excludes pattern to filter out certain
repositories
 "includesPattern" : <string>, // Includes pattern to filter in certain
repositories
 "principals" : // The principles to which this permission target should be applied
 {
 "users" :
 {
 <userName> : [{permission}] // The users and corresponding permissions they are
given where m=admin; d=delete; w=deploy; n=annotate; r=read
 },
 "groups" :
 {
 <groupName> : [{permission}] // The groups and corresponding permissions they
are given where m=admin; d=delete; w=deploy; n=annotate; r=read
 }
 }

 }
}

154 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Managing+Permissions

Produces: application/json
Updates the permission target called "releasers" on repository "ext-release-local" for "itmanagers" awarding them full permissions on any Example:

remote repository on Artifactory instances "cluster-121-10100" and "cluster-126-10100".

PUT /api/v1/permissionTargets/releasers
{
 "instanceNames": ["cluster-121-10100","cluster-126-10100"],
 "permissionTarget" : {
 "anyRemote" : true,
 "repositories" : ["ext-release-local"],
 "principals": {
 "groups" : {
 "itmanagers" : ["d","w","n","r"]
 }
 }
 }
}

SYSTEM

System Health Check

Description: Simple ping to Mission Control to see if it is running.
 1.0Since:

NoneSecurity:
 GET /api/v1/pingUsage:

NoneConsumes:
 application/json Produces:

{
 "data" : true
}

155 JFrog Mission Control Version 2.0 User Guide.pdf

JFrog CLI
JFrog CLI documentation has moved to a dedicated site that describes how to use the CLI with all JFrog Products.

Please refer to .JFrog CLI User Guide

156 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/CLI/Welcome+to+JFrog+CLI

Disaster Recovery
Overview
As the centralized dashboard for all your Artifactory services, JFrog Mission Control is the perfect place
to configure disaster recovery. The purpose of configuring disaster recovery is to prevent the loss of
critical data in the event that one of your Artifactory services experiences an event that causes
irreversible damage and loss of data, or if it needs to be taken down gracefully for any other reason (e.g.
hardware maintenance on the server machine). JFrog Mission Control lets you configure disaster
recovery in the module under Admin DR | DR Configuration.

Disaster Recovery is implemented by configuring complete system replication between services Master
and corresponding services where a Master service holds critical data you want to protect against Target
irreversible damage, and the corresponding DR Target is the replication target of the Master.

Managing DR involves the following basic steps:

1. Sy
nc
Ar
tif
ac
tor
y
En
cr
yp
tio
n
Key

If your Master service has Artifactory Key Encryption enabled, you need to sync over the
Artifactory Encryption Key to your Target service so that all passwords can be properly
decrypted once your security settings are replicated to the Target. For details, please refer
to Artifactory Key Encryption in the JFrog Artifactory User Guide. From version 5.5, new
installations of JFrog Artifactory will have enabled by default. Artifactory Key Encryption To
sync the to the target, you can perform a system import of the Artifactory Encryption Key
master, or just run the DR steps with encryption disabled on both master and target.

2. Co
nfi
gu
re

Configuring your DR replication Master and Target pairs.

3. Ex
ter
na
l
Sy
nc

(O
pti
on
al)

You may work with the relevant department in your organization to manually sync between
Master and Target services outside of both Mission Control or Artifactory before you
initialize DR (step 3, Init, below).

This optional, external synchronization can avoid lengthy and resource intensive
synchronization (step 4 below) if the storage on your Master service contains large
amounts of data.

4. Init Establishing the replication relationships between all local repositories on the Master
service and the corresponding repositories on the Target service.

Backing up security settings and various configuration files from the Master service to
Mission Control. These are later pushed to the Target service.

5. Sy
nc
hr
on
ize

Invoking replication from the Master service to the Target service so that each local
repository on the Target service is synchronized with the corresponding repository on the
Master service.

Page Contents

Overview
Configuring Master and
Target Pairs

Authentication
with Access
Tokens

Initializing DR
Updating
Configuration Files

Synchronizing Repositories
Manual Sync
Automatic Sync
Sync Status

Activating DR
Restoring the Master
Service
Deleting a DR Configuration
DR Configuration Properties

No data transfer

Note that at this stage repository data is not yet transferred from the Master to
the Target service.

Now you're protected

Once all repositories on your Target service are synchronized with your Master
service, your system is DR protected.

This means you can instantly invoke failover from your Master to your Target
service so that your users may transparently continue to get service from
Artifactory.

157 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Artifactory+Key+Encryption

6. Ac
tiv
ate

Invoking failover from the Master service to the Target. Once this operation is complete, all
requests targeted at the Master service will automatically be rerouted to the Target service.

7. Re
st
ore

Restoring a Master service from its Target once the event that spawned DR is remediated.

Configuring Master and Target Pairs
The Master and Target pairs you have configured are displayed in the module under Manage DR Configuration.

To configure a new Master / Target pair click Create DR.

DR is now in effect

Once you have activated your DR setup, and failover is in effect, your
Artifactory users will continue to get service transparently without having to
make any changes to their environments.

DR is not HA

Don't confuse setting up Artifactory in a High Availability configuration with setting up Disaster
Recovery.

A high availability configuration uses two or more redundant Artifactory servers to ensure
users continue to get service if one or more of the Artifactory servers goes down (whether due
to some hardware fault, maintenance, or any other reason) as long as at least one of the
servers is operational. Once HA is set up, service continues automatically with no intervention
required by the administrator.

Disaster recovery is designed to continue providing service as quickly as possible if a whole
 goes down (for example, all servers in an HA installation go down Artifactory installation

due to an electrical malfunction in the site). In this case, requests can be rerouted to the
Target service, and, while this is not automatic, it is achieved with a single click of a button in
Mission Control.

158 JFrog Mission Control Version 2.0 User Guide.pdf

Select the Artifactory services you wish to define as the Master and Target pair and click "Save".

Once you have configured the Artifactory services of a Master and Target pair, you can not change them. If you need to change a Master and Target
pair, you need to delete the pair from the list and configure a new pair.

To proceed with the DR process, click the icon to display the Disaster Recovery screen for the selected Master and Target pair.Control Panel

The Disaster Recovery screen displays several panels in two separate tabs.

The tab Master-Target displays:

: Provides details about the Master serviceMaster
: Provides details about the Target serviceTarget

: Displays log file outputLog

The displays the synchronization status of the corresponding repositories on the Master and Target services.Repositories tab

The menu lets you refresh the table, perform a sync test, or proceed through the phases of DR (Init, Activate etc.)Actions Repositories

Master and Target Artifactory version

Master and Target pairs must both be running Artifactory v4.7.2 or later.

159 JFrog Mission Control Version 2.0 User Guide.pdf

Repository Key A logical name for the service.

Type The service type. Artifactory or Xray.

Space Total used space for the repository.

Folders Number of folders in the repository.

Files Number of files in the repository.

Metadata Files Number of metadata files.
(Applicable only for Maven repositories)

Metadata Size Size of metadata files.
(Applicable only for Maven repositories)

Authentication with Access Tokens
Any issued by the Master service for authentication will not work with the DR Target. For clients to work with the DR target once DR access tokens
has been activated, the Target must issue new access tokens.

Initializing DR

Once your Master and Target pairs are , to initialize DR, select from the menu. Configured Init Actions

Initializing DR essentially means setting up all the replication configurations that are needed for DR, meaning:

Every repository on the Master service has a corresponding repository on the Target service
Replication from each local repository on the Master to the corresponding local repository on the Target is configured. At this stage,
replication is not yet enabled.
Replication from each local repository from the Target to the corresponding local repository on the Master is configured but (This disabled.
configuration will later be used during the operation.) Restore
If the Master had additional replications, not related to DR, configured, these are duplicated in the Target, but are also .disabled

Example

Consider that repository maven-local on service has a replication configured to my-local-maven on service . For maven-local to be DR Master Other
protected:

Using Master Key Encryption

If your Master service has Master Key Encryption enabled, you need to sync over the Master key to your Target service so that all
passwords can be properly decrypted once your security settings are replicated to the Target. For details, please refer to Artifactory Key
Encryption in the JFrog Artifactory User Guide.

Make sure your Master and Target services have corresponding repositories with enough storage

It is up to your JFrog Mission Control administrator to ensure that each repository on the Master service has a corresponding repository on
the Target service for replication. Before initializing DR, Mission Control will also verify that the target service has enough storage available.

160 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Access+Tokens
https://www.jfrog.com/confluence/display/RTF/Artifactory+Key+Encryption
https://www.jfrog.com/confluence/display/RTF/Artifactory+Key+Encryption

There must be a service with a corresponding maven-local repository definedTarget
Replication is configured from maven-local on to maven-local on however, it is currently Master Target, disabled.
Replication from maven-local on the back to is also configured, but this replication is also currently .Target Master disabled
Replication from maven-local on the to my-local-maven on is also configured, but this replication is currently .Target Other disabled

Updating Configuration Files
Initializing DR performs different actions on configuration files in the Target service.

The following entities are (replaced by their counterparts from the Master service)overridden

Existing repositories having the same name (e.g. a repository called "maven-local" on the Target is replaced with a repository of the same
name that exists on the Master)
Property sets

The following entities are updated

Layouts
LDAP settings
LDAP groups
SSO configuration

In addition, any user plugins existing on the Master but missing on the Target are created on the Target service.

Synchronizing Repositories
When invoking DR, or restoring your Master service, at some point, you will need to synchronize repositories between your Master and Target
services:

When invoking DR, you need to synchronize repositories once initialization is complete and you will be moving data from your Master to your
Target service.
When doing a Restore, you need to synchronize repositories after invoking from the menu and you will be moving data Restore Actions
from your Target back to your Master service.

Depending on the amount of data in your filestore, this may be a resource intensive operation. Therefore, to avoid overloading your systems which
may cause performance issues, Mission Control lets you manage synchronization of your repositories either manually or automatically.

Manual Sync
You can invoke replication directly on the Artifactory service (the Master service when invoking DR, the Target service when doing a restore) in a
gradual manner according to your IT policies and available bandwidth. For details, please refer to in the Mission Control User Guide, or to Replication

 in the JFrog Artifactory User Guide. In this way, using your knowledge of how much data is hosted in each of Scheduling and Configuring Replication
your repositories, you may implement a gradual synchronization process with minimal or no impact to your system performance.

Automatic Sync
If the amount of data in your system does not pose any performance risk during synchronization, you may invoke a full synchronization automatically
through Mission Control from the menu by selecting . Mission Control invokes replication indirectly by setting the Actions Enable DR Replications
cron expression that determines the timing of replication for each repository being replicated.

When invoking DR, it looks like this:

For a Restore, it looks like this:

161 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuration+DSL#ConfigurationDSL-Replication
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-SchedulingandConfiguringReplication

Even so, Mission Control avoids risking a performance hit and ensures that replications are not all invoked simultaneously. All replications are
configured to run sequentially, at 5 minute intervals (default) to ensure that replication is initiated in a staggered manner to avoid a heavy load burst
when data transfer begins. You can modify the time interval through the parameter in your drconfig.replication.cronIncrement $MC_HOME

 file. /etc/mission-control.properties

Sync Status
At any time, the panel gives you a clear picture of the syncrhonization status of your repositories. Click any header in the to Repositories Legend
view only those repositories in the selected status. For example, click to view those repositories that exist in the Master service but Missing Repo
were missed in the Target service. The table in the Repositories panel displays the following information for both the Master and Target service:

Repository
Key

The repository key

Space The amount of storage occupied by files in the repository

Files The number of physical files in the repository

Folders The number of folders in the repository

Items The number of items in the repository. Note that while a file is stored only once, it may appear as several items in different
locations in the repository.

Activating DR
Activating DR is the process of bringing the Target service into operation when the Master service is down
or not available. Once activation is complete, an administrator needs to update the DNS or load balancer to
point to the Target service.

To activate DR, from the menu, click " "Actions Activate

162 JFrog Mission Control Version 2.0 User Guide.pdf

The following actions that occur during the activation process depend on whether the Master service is up or not:

Master service is up

Replication is globally disabled.

Master is down or was gracefully turned off

Mission Control issues a notification in the UI that the Target service is up and running; the Master service is displayed as being offline.
Replication is globally enabled on the Target service.

At this point, your administrator needs to redirect traffic from the Master service by pointing your DNS or load balancer to the Target service on the DR
environment. This change should not have any effect on the IP/DNS records that are configured on your Mission Control DR configurations.

This brings you to the phase in which network traffic goes to your Target.Failover

163 JFrog Mission Control Version 2.0 User Guide.pdf

Restoring the Master Service
Once the Master service can be brought back into normal operation, you need to restore your system and data back from the Target service. This
process mirrors the process of setting up and activating DR.

Before you proceed with the restore operation, you need to ensure the following pre-requisites are met:

Both the Master and Target services are up and running
Replication in the Master service is (otherwise you run the risk of losing data). globally disabled
No changes should be made to the Target service configuration during the restore operation

Once these pre-requisites are met, invoke by selecting it from the menu. During the restore process, Mission Control performs the Restore Actions
following actions:

Duplicate all non-DR replications on the DRTarget service back to the Master service.
Create all repositories that exist on the Target service but not on the Master service

Now you are ready to synchronize your repositories from your Target service back to your Master service as described in .Synchronizing Repositories

Once you have finished synchronizing your repositories you need to finalize the restore operation by selecting This Actions | Complete Restore.
action gives you the option of removing the DR replication sessions between the corresponding Target and Master once the restore is complete to
avoid having redundant replications configured for the Target.

Finally, once the restore operation is complete, your administrator needs to redirect traffic Target service back to your Master service by manually
updating your load balancer or DNS to point to the Master service.

Deleting a DR Configuration
To delete a DR configuration, simple click the corresponding "Delete" icon in the list.DR Configurations

Note that since any DR configuration that has been invoked will create replication sessions between the corresponding Master and Target services,
you have the option of leaving those replication sessions defined or removed when you delete the DR configuration.

164 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-GlobalReplicationBlocking

DR Configuration Properties
Your includes a number of properties related to your DR configuration:$MC_HOME/etc/mission-control.properties

drconfig.
replicati
on.
cronExpre
ssion

When performing an automatic sync of repositories, this parameter determines when the first repository will be synchronized.

drconfig.
replicati
on.
cronIncre
ment

Default: 5 min

When performing an of repositories, this parameter determines the time interval between the successive initiation of automatic sync
replication for the local repositories on the Master service. For example, if set to 5 minutes, Mission Control will set the cron
expression in the first repository in the Master service to invoke replication as specified in the cron expression, the next one will start
5 minutes later, the one after that, 5 minutes later again, and so forth.

drconfig.
sync.
period

Default: 300,000 ms

Mission Control periodically synchronizes the repository definitions and replication settings between the Master and Target service
(config descriptor) . This parameter sets period between these sync job executions.

artifacto
ry.
client.
socketTim
eout

Default: 45 seconds

Sets the timeout period for a socket opened to Artifactory.

drconfig.
replicati
on.
socketTim
eout

Default: 15000 milliseconds

Sets the Artifactory replication socket timeout for DR.

drconfig.
space.
detection
.disabled

Default: true

Before initializing DR, Mission Control verifies that the target service has enough storage available. When true, this parameter
specifies that Mission Control should not perform this check for available space. This is the desired behavior when your target
service uses cloud storage in which case the check for available space is not needed.

If you modify your file, we recommend restarting Mission Control to make sure your changes take effect.$MC_HOME/etc/mission-control.properties

When should you change this?

If several repositories on your Master service that you are replicating have large amounts of data, we recommend
increasing this value to avoid excessive loads on your system.

If the security and configuration your Artifactory service services thousands of users and has thousands of repositories,
descriptors may be too big to complete transfer before the socket times out. Increasing the socketTimeout parameter
should solve this issue.

165 JFrog Mission Control Version 2.0 User Guide.pdf

166 JFrog Mission Control Version 2.0 User Guide.pdf

System Backup and Rapid Recovery
Overview
As the centralized command and control center for all your Artifactory instances, we recommend
maintaining a dormant copy of Mission Control that can quickly take over in case your main installation
goes down for any reason. To facilitate rapid recovery capabilities, this page offers system backup
procedures that keep your dormant copy updated in the background and ready to take over at a
moment's notice. These procedures are based on frequently synchronizing the and MC_HOME/etc MC_HO

 folders from your main Mission Control instance to your recovery instance during normal ME/data
operation.

Page Contents

Overview
Backing Up for Rapid
Recovery

Running with
Docker
Non-Docker
Installations

Then, in case of a failure on your main Mission Control installation, your administrator can quickly implement failover to the recovery instance by
updating your DNS record, or modifying your load balancer configuration to point to your recovery instance. Once failover is complete and the
recovery instance is operational, it then synchronizes any further changes in configuration back to the storage of the main instance so it can take over
once the fault is remediated.

We recommend backing up the MC_HOME/etc folder

While not strictly required, we strongly recommend backing up the folder so MC_HOME/etc
that Mission Control properties are also backed up and can be applied to the recovery
instance.

167 JFrog Mission Control Version 2.0 User Guide.pdf

Backing Up for Rapid Recovery

Running with Docker
For an installation of Mission Control as a , data and configuration files are stored under the folder (whose default location is Docker image $MC_HOME

). $HOME/.jfrog/jfmc

To enable fully functional recovery following a failure in Mission Control, you need to back up all content in this folder.

Non-Docker Installations
In non-Docker installations:

A data folder is set up (default location is). /var/opt/jfrog/mission-control
User choices made during the installation are also stored in: . /opt/jfrog/jfmc/scripts/setenv.sh

To enable fully functional recovery following a failure in Mission Control, you need to back up all content in the above folmission-control
der and the file.setenv.sh

168 JFrog Mission Control Version 2.0 User Guide.pdf

Troubleshooting
Installation

Cause From version 2.0 standalone ZIP installations have been deprecated from Mission
Control.

Resolution For a full list of installation options, please refer Installation and Upgrade

Disaster Recovery
Ca
use

The DR target is not able to decrypt passwords since it does not have the same Master
Key as the DR Master service.

Re
sol
ution

Sync over the Artifactory Master Key from the DR Master to your Target Artifactory service.
This will allow all passwords to he properly decrypted once your security settings are
replicated to the Target.

For details, please refer to in the JFrog Artifactory User Guide. Master Key Encryption

Installation
Disaster Recovery
Scripting
Graphs
Groups
REST API
Services

Scripting
Cau
se

 In version 2.0, Mission Control made significant changes in how configuration scripts are written. These changes are not backwards
compatible, so any scripts written for Mission Control version 1.x will not work. For details, please refer to . <TBD Configuration Scripts
update link>.

Res
oluti
on

 You need to migrate your scripts to work with Mission Control 2.0 and above. While the migration process is not automatic, it is quite
simple. For details please refer to . Migrating Scripts from Version 1.x to Version 2.x <TBD update link>

Cause Previous to Mission Control version 2.0, implementing a Star Toplogy was very complex, cumbersome and error-prone.

Reso
lution

A new configuration block was introduced in Mission Control version 2.0 to make implementing a Star Toplogy, using either push or
pull replication, very simple. For details, please refer to . Star Toplogy <TBD update link>

Cau
se

Previous to Mission Control version 2.0, implementing a Full Mesh Toplogy was very complex, cumbersome and error-prone.

Res
oluti
on

A new configuration block was introduced in Mission Control version 2.0 to make implementing a Star Toplogy, using either push or pull
replication, very simple. It is now much easier to implement a Full Mesh by configuring each node with its own Star Topology.

For details, please refer to . Star Toplogy <TBD update link>

Cause The default layout for any new repository is .maven-2-default

Resolution When creating a new repository in a script, modify the field to the correct layout for your repository type.repoLayoutRef

Cause When updating a repository using a script, any parameter that is not explicitly specified is updated to the default value of that
parameter.

Resoluti
on

 When updating a repository using a script, specify all the parameter for that repository that don't take the default value, even
those that shouldn't change.

Cau
se

 Mission Control scripts are maintained in one of its internal databases which cannot be accessed form outside of Mission Control.

Res
oluti
on

To access Mission Control scripts, configure a Git repository to which Mission Control will synchronize all its scripts as described under
 . This also allows you to create and modify your scripts using any external editor.Git Integration <TBD update link>

Graphs
Cause After adding a service to the system, it can take up to 15 minutes before Mission Control displays any data samples.

169 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Installing+Mission+Control#InstallingMissionControl-Installation
https://www.jfrog.com/confluence/display/RTF/Master+Key+Encryption
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374631
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374631
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374649
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374649
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374644

Resolution Just wait up to 15 minutes, and you should then see data for the new added service.

Cau
se

 To preserve historical data for deleted services, Mission Control stores the data under a fictitious service named
<deleted_service_name>_old_xx (e.g. art1_old_01, . XX will be incremented if you delete and re-add a service with the art1_old_02
same name.

Res
oluti
on

 When viewing graphs for all services, these deleted will still appear, however, you may also focus on a specific service.

Groups
Ca
use

 From version 2.0, Groups have been deprecated in Mission Control.

Re
sol
ution

Previous to version 2.0, creating Groups was a convenient way to run scripts on a number of Artifactory services at once since each
script could only perform one action at a time. From version 2.0, scripting is much more flexible and you can specify any number of
services on which a script should act.

REST API
Ca
use

In version 2.0, Mission Control implemented a major upgrade of the REST API which is not backwards compatible with previous
versions.

Re
sol
ution

You need to update your scripts to use the new REST API. For details, please refer to the updated Mission Control REST API <TBD
page, especially the section that describes how to map endopints from previous update link> Version Mappings <TBD update link>

versions to version 2.0 and above.

Services
Cause Mission Control extracts storage information about managed Artifactory services using a REST API call.

Resolution In some cases, the REST API call may take time to return. Wait a few moments and refresh the screen.

170 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374696
https://www.jfrog.com/confluence/pages/viewpage.action?pageId=69374696

1.

2.

3.

4.

5.
6.

Release Notes
Overview
This page presents release notes for JFrog Mission Control describing the main fixes and enhancements
made to each version as it is released.

Download
Click to download the latest version of .JFrog Mission Control

Installation
For installation instructions please refer to . Installing Mission Control

To upgrade to the latest version, please refer to . Upgrading Mission Control

 To receive automatic notifications whenever there is a new release of Mission Control, please watch
us on Bintray.

Mission Control 2.1
January 8, 2018

Highlights

Ubuntu and Red Hat Installation

This release introduces support for additional flavors of Linux and adds Ubuntu 16.x and and Red Hat 7.x
as supported platforms. For details on how to install Mission Control on these platforms, please refer to In

. . stalling Mission Control

Using External Databases

Mission Control uses Elasticsearch, MongoDB and PostgreSQL databases for its different functions, and
until now, would install dedicated instances of each of these databases. This version gives you more
control of your resources and lets you direct Mission Control to use instances of these databases you
may already have installed and in use, rather than creating new ones. Offering full flexibility, during the
installation or upgrade process, Mission Control lets you select which databases should externalized and
which Mission Control should create for its own dedicated use.

Maven Metadata in DR Repositories Tab

In addition to the replication status, for Maven packages, the DR Repositories tab now also includes the
metadata file count and size for each repository.

System Monitoring

Mission Control now displays your general system status as an icon on the top ribbon of the UI. Services
notifications are automatically updated at all times.

Feature Enhancements

In both the UI and the REST API, the option to execute a script on a non-online service is
blocked.
JFrog Mission Control blocks creating a DR pair when the master version is higher than target
version.
In the REST API, two new commands have been added. The command Change Password
allows users to change their own password and enables the admin to change passwords for all
users. The command updates site information without updating the Partial Update Site By Name
attributes.

 When setting DR, you can manually set the replication socket timeout in the DR configuration
.properties file

Mission Control allows you to add a commit message when updating a script.
The now displays the percentage of used storage. Top 5 Services graph

Mission Control 2.1.1
January 23, 2018

Page Contents

Overview
Download
Installation

Mission Control 2.1
Mission Control
2.1.1

Mission Control 2.0

171 JFrog Mission Control Version 2.0 User Guide.pdf

https://bintray.com/jfrog/product/mission-control/download
https://bintray.com/jfrog/jfrog-mission-control
https://www.jfrog.com/confluence/display/MC2X/Disaster+Recovery#DisasterRecovery-ConfiguringMasterandTargetPairs
https://www.jfrog.com/confluence/display/MC2X/Mission+Control+REST+API#MissionControlRESTAPI-ChangePassword
https://www.jfrog.com/confluence/display/MC2X/Mission+Control+REST+API#MissionControlRESTAPI-PartialUpdateSiteByName
https://www.jfrog.com/confluence/display/MC2X/Disaster+Recovery#DisasterRecovery-DRConfigurationProperties
https://www.jfrog.com/confluence/display/MC2X/Disaster+Recovery#DisasterRecovery-DRConfigurationProperties
https://www.jfrog.com/confluence/display/MC2X/Graphs#Graphs-Top5Services(Max.perWeek)

Highlights

Helm Chart Repositories

This release adds full support in Mission Control for which were introduced in JFrog Artifactory 5.8. Helm Chart repositories

Mission Control 2.0
November 20, 2017

JFrog is pleased to release Mission Control 2.0.
This release introduces many changes from version 1.x to improve workflow and efficiency in managing your global Artifactory and Xray services.
Yes, you read correctly, Mission Control now also manages your Xray services. In addition, Mission Control 2.0 introduces significant changes in
installation and upgrade procedure, workflow for adding and managing services, a new concept of that associate services to a geographic Sites
location, improvements in and more. Usage Graphs

Note that some of the new features and enhancements are breaking changes that are not compatible with version 1.x. In these cases, we offer a
migration path to version 2.0.

For details about the changes introduced by Mission Control 2.0, please read the sections below.

Highlights

Artifactory and Xray Services

In addition to managing your Enterprise Artifactory instances, Mission Control can now also manage the JFrog Xray instances attached to them. This
allows you to do things like configure connections between Artifactory and Xray services, use scripts to create and more. Watches

To manage Artifactory or Xray instances through Mission Control, they must be added as and be assigned to . Services Sites

Scripting

Scripting has undergone significant changes in Mission Control 2.0. Most importantly, configuration scripts are now much more flexible allowing you to
operate on as many Artifactory or Xray services, and on any number of repositories as you want in a single script (previously, each script could only
perform one action on a single service). To support this capability, Mission Control 2.0 introduces service closures in configuration scripts. These
define the Artifactory and Xray instances on which the script operates and enclose the different configuration blocks that create or implement changes
on Artifactory and Xray services.

The scripting DSL has also been significantly enhanced with new configuration blocks. These include configuration blocks to create and configure
Xray services, a security block to configure users, groups and permissions in Artifactory services and more. Make sure to check out the Star Topology
 configuration blocks that make it very easy to set up a complex one-to-many replication relationship using three lines of code. Not also that applying a
Star Topology configuration to all members of a star actually implements a full mesh topology.

Graphs

The Graphs UI has been enhanced to give you an easy way to focus on different Artifactory instances and repositories and also zoom in on specific
time periods on historical usage graphs. From version 2.0, Mission Control uses a new Elasticsearch database to store historical usage data. Upon
installation of the new version, the previous InfluxDB database will no longer be used, and usage data will only be collected in the new database.

Installation and Upgrade

Instructions for installing and upgrading to version 2.0 have changed, but remain simple procedures, with support for and instCentOS, Debian Docker
allations.

To install Mission Control 2.0 as CentOS or Debian distribution, please refer to . Installing Mission Control

To install and run the Mission Control Docker image, please refer to . Running with Docker

Breaking Change - You need to migrate your scripts

The new scripting mechanism is a breaking change which means that scripts written for JFrog Mission Control 1.x will not work in version
2.0 and above. While there is no way to migrate your scripts automatically, the process is not very complicated. For guidelines and best
practices for migrating your scripts please refer to .Migrating Scripts from Version 1.x to Version 2.x

[Optional] You may migrate historical usage data from InfluxDB to Elastic Search

If you wish to continue viewing historical usage data collected in the InfluxDB database of versions 1.x, you can migrate this data to the
new Elasticsearch database using the process described in .Migrating Scripts from Version 1.x to Version 2.x

172 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/RTF/Helm+Chart+Repositories
https://www.jfrog.com/confluence/display/XRAY/Watches
https://www.jfrog.com/confluence/display/MC2X/Configuration+DSL#ConfigurationDSL-StarTopology
https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-MigratingScriptsfromVersion1.xtoVersion2.x
https://www.jfrog.com/confluence/display/MC2X/Configuration+Scripts#ConfigurationScripts-MigratingScriptsfromVersion1.xtoVersion2.x

1.
2.

3.

1.

REST API

Mission Control 2.0 introduces a completely new REST API that accommodates all the new functionality introduced in this version. The new REST API
adds several new endpoints, but also removes some, including endpoints related to configuring users, groups and permissions in Artifactory since this
functionality is now available through JFMC scripting. From Mission Control 2.0, the REST API v3 is active, while the REST API v2 is deprecated.

Sites

Sites are a new concept in JFrog Mission Control. They represent physical locations (cities) into which you can aggregate the different Artifactory and
Xray services serving them. Any service defined in Mission Control must be assigned to a site. Sites are displayed in the module (which Explore
replaces the old Dashboard module) and can display sites as a list view or on a map.

Feature Enhancements

Mission Control startup time has been greatly improved.
Mission Control's DSL has been enhanced with new configuration blocks to allow extremely easy configuration of replication relationships
that implement Star Topologies for geographically distant Artifactory services. configures a multi-push replication relationship while starPush

 configures pull replication. As a result, the multipushReplication configuration block, which is now redundant, has been deprecated. starPull
The REST API endpoint has been enhanced to provide more detailed error messages if script execution failsExecute Script

Issues Resolved

Fixed an issue that prevented Mission Control from implementing DR when the Master Artifactory instance was using .encrypted passwords

ZIP installation is deprecated

From version 2.0, Mission Control is no longer available as a ZIP installation.

Breaking Change - You need to migrate your REST API calls

The new REST API is a breaking change which means any scripts that use the previous REST API version will not work. To learn how to
migrate your scripts to the new REST API, please refer to in the new Mission Control REST API page.Version Mappings

Existing Artifactory services are automatically assigned to a site

When you upgrade to Mission Control 2.0, any Artifactory services already managed by your current version of Mission Control will be
assigned to new Sites that will be created according to the location of your Artifactory instances. For example, an Artifactory service located
in San Fransisco, will be assigned to a new site in Mission Control that's located in San Fransisco.

Artifactory services that do not have a location will be placed in the "Unassigned Services" site by default.

"Groups" feature is deprecated

From version 2.0, collecting managed Artifactory services into "Groups" is deprecated. All services should be placed in the context of a Site.

173 JFrog Mission Control Version 2.0 User Guide.pdf

https://www.jfrog.com/confluence/display/MC2X/Configuration+DSL#ConfigurationDSL-PushReplication
https://www.jfrog.com/confluence/display/MC2X/Configuration+DSL#ConfigurationDSL-PullReplication
https://www.jfrog.com/confluence/display/MC2X/Mission+Control+REST+API#MissionControlRESTAPI-ExecuteScript
https://www.jfrog.com/confluence/display/RTF/Artifactory+Key+Encryption
https://www.jfrog.com/confluence/display/MC2X/Mission+Control+REST+API#MissionControlRESTAPI-VersionMappings

	Welcome to JFrog Mission Control
	Installing Mission Control
	Managing Third-Party Components
	Using External Databases
	Elasticsearch Usage Guide
	Migrating Data From InfluxDB to Elasticsearch

	Upgrading Mission Control
	Running with Docker
	Configuring Mission Control
	Configuration Scripts
	Configuration DSL
	Git Integration

	Exploring Sites
	Managing Services
	Managing Licenses
	Notifications
	Graphs
	JMX MBeans
	System Monitoring
	Mission Control REST API
	Working with User Input
	Mission Control REST API v2
	Mission Control REST API v1

	JFrog CLI
	Disaster Recovery
	System Backup and Rapid Recovery
	Troubleshooting
	Release Notes

